Thymidine Kinase 2 and Mitochondrial Protein COX I in the Cerebellum of Patients with Spinocerebellar Ataxia Type 31 Caused by Penta-nucleotide Repeats (TTCCA)n

[1]  S. Saxena,et al.  Emerging Perspectives on Dipeptide Repeat Proteins in C9ORF72 ALS/FTD , 2021, Frontiers in Cellular Neuroscience.

[2]  K. Nakatani,et al.  Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model , 2020, Nature Communications.

[3]  T. Ashizawa,et al.  Founder Effects of Spinocerebellar Ataxias in the American Continents and the Caribbean , 2020, The Cerebellum.

[4]  A. Konnerth,et al.  Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity , 2019, Nature Neuroscience.

[5]  F. Tempia,et al.  Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity , 2018, Neurobiology of Disease.

[6]  Eric T. Wang,et al.  SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F , 2018, The EMBO journal.

[7]  V. Volpini,et al.  Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37 , 2018, Brain : a journal of neurology.

[8]  V. Stefans,et al.  Clinical and molecular spectrum of thymidine kinase 2-related mtDNA maintenance defect. , 2018, Molecular genetics and metabolism.

[9]  Robert W. Taylor,et al.  Retrospective natural history of thymidine kinase 2 deficiency , 2018, Journal of Medical Genetics.

[10]  Koji Abe,et al.  Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy , 2018, Nature Genetics.

[11]  J. Taylor,et al.  Regulatory Role of RNA Chaperone TDP-43 for RNA Misfolding and Repeat-Associated Translation in SCA31 , 2017, Neuron.

[12]  H. Morita,et al.  Natural History of Spinocerebellar Ataxia Type 31: a 4-Year Prospective Study , 2017, The Cerebellum.

[13]  F. Yu,et al.  SMRT Sequencing of Long Tandem Nucleotide Repeats in SCA10 Reveals Unique Insight of Repeat Expansion Structure , 2015, PloS one.

[14]  Nam-Kyung Yu,et al.  CTCF as a multifunctional protein in genome regulation and gene expression , 2015, Experimental & Molecular Medicine.

[15]  Kunihiro Yoshida,et al.  Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31 , 2013, Neuropathology (Kyoto. 1993).

[16]  Y. Eishi,et al.  Abnormal RNA structures (RNA foci) containing a penta‐nucleotide repeat (UGGAA)n in the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis , 2013, Neuropathology : official journal of the Japanese Society of Neuropathology.

[17]  B. Wong,et al.  Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene. , 2013, Molecular genetics and metabolism.

[18]  Y. Kanda,et al.  Investigation of the freely available easy-to-use software ‘EZR' for medical statistics , 2012, Bone Marrow Transplantation.

[19]  K. Claeys,et al.  Adult cases of mitochondrial DNA depletion due to TK2 defect , 2012, Neurology.

[20]  A. Paetau,et al.  Thymidine kinase 2 mutations in autosomal recessive progressive external ophthalmoplegia with multiple mitochondrial DNA deletions. , 2012, Human molecular genetics.

[21]  M. Vidailhet,et al.  Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians , 2011, Neurology.

[22]  H. Mizusawa,et al.  The chromosome 16q‐linked autosomal dominant cerebellar ataxia (16q‐ADCA): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[23]  D. Dinsdale,et al.  Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration. , 2010, Human molecular genetics.

[24]  Naomichi Matsumoto,et al.  Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan , 2010, neurogenetics.

[25]  K. Hasegawa,et al.  MELAS with diffuse degeneration of the cerebral white matter: Report of an autopsy case , 2010, Neuropathology : official journal of the Japanese Society of Neuropathology.

[26]  Yuko Saito,et al.  Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. , 2009, American journal of human genetics.

[27]  A. Paetau,et al.  Thymidine kinase 2 defects can cause multi-tissue mtDNA depletion syndrome. , 2008, Brain : a journal of neurology.

[28]  P. Navas,et al.  Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency , 2008, The Cerebellum.

[29]  S. Dimauro,et al.  CoQ10 deficiency diseases in adults. , 2007, Mitochondrion.

[30]  H. Mizusawa,et al.  On autosomal dominant cerebellar ataxia (ADCA) other than polyglutamine diseases, with special reference to chromosome 16q22.1‐linked ADCA , 2006, Neuropathology : official journal of the Japanese Society of Neuropathology.

[31]  V. Volpini,et al.  Cerebellar ataxia with coenzyme Q10 deficiency: Diagnosis and follow-up after coenzyme Q10 supplementation , 2006, Journal of the Neurological Sciences.

[32]  N. Bresolin,et al.  New mutations in TK2 gene associated with mitochondrial DNA depletion. , 2006, Pediatric neurology.

[33]  Marco Seri,et al.  SCA28, a novel form of autosomal dominant cerebellar ataxia on chromosome 18p11.22-q11.2. , 2006, Brain : a journal of neurology.

[34]  T. Arinami,et al.  A clinical, genetic, and neuropathologic study in a family with 16q-linked ADCA type III , 2005, Neurology.

[35]  E. Holme,et al.  Novel mutations in the thymidine kinase 2 gene (TK2) associated with fatal mitochondrial myopathy and mitochondrial DNA depletion , 2005, Neuromuscular Disorders.

[36]  C. Gellera,et al.  SCA 28 , a novel form of autosomal dominant cerebellar ataxia on chromosome 18 p 11 . 22 – q 11 . 2 , 2005 .

[37]  S. Dimauro,et al.  Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. , 2003, Archives of neurology.

[38]  H. Mandel,et al.  Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy , 2001, Nature Genetics.

[39]  N. Mori,et al.  MELAS with the mitochondrial DNA 3243 point mutation: a neuropathological study , 2000, Acta Neuropathologica.

[40]  U. Hellman,et al.  Human thymidine kinase 2: molecular cloning and characterisation of the enzyme activity with antiviral and cytostatic nucleoside substrates , 1999, FEBS letters.

[41]  A. Karlsson,et al.  Cloning of the cDNA and Chromosome Localization of the Gene for Human Thymidine Kinase 2* , 1997, The Journal of Biological Chemistry.

[42]  U. Hellman,et al.  Cloning and expression of human mitochondrial deoxyguanosine kinase cDNA , 1996, FEBS letters.

[43]  A. Karlsson,et al.  Cloning and expression of human deoxyguanosine kinase cDNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.