Solid-state phase transformation kinetics in the near-equilibrium regime

Solid-state phase transformation kinetics in the near-equilibrium regime behaves differently from that in extremely non-equilibrium regime since their thermodynamic states are different. Incorporating temperature- and transformed fraction-dependent thermodynamic terms, a thermo-kinetic model is derived to describe the transformation kinetics in the near-equilibrium regime. The model predicts a sluggish stage in isothermally conducted transformation and a temperature-dependent stage in non-isothermally conducted transformation. Then, the kinetics of γ/α transformations in two binary substitutional Fe-based alloys (i.e. Fe-3.28 at.% Mn and Fe-1.73 at.% Co), measured by isothermal and non-isothermal dilatometry, is investigated by the newly proposed model. The model quantitatively describes the retarded isothermal kinetics in Fe-3.28 at.% Mn alloy and the abnormal non-isothermal kinetics in Fe-1.73 at.% Co alloy.

[1]  Khachaturyan,et al.  Elastic strain energy of inhomogeneous solids. , 1995, Physical review. B, Condensed matter.

[2]  S. J. Song,et al.  Kinetics of solid-state transformation subjected to anisotropic effect: Model and application , 2011 .

[3]  A. Dinsdale SGTE data for pure elements , 1991 .

[4]  K. Ishida,et al.  Phase equilibria in the Fe-Co binary system , 2002 .

[5]  J. Ågren,et al.  A general method for calculating deviation from local equilibrium at phase interfaces , 2003 .

[6]  Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for non-isothermal experiments and its analytical solution , 2006, 0811.1428.

[7]  E. Mittemeijer Analysis of the kinetics of phase transformations , 1992 .

[8]  L. Höglund,et al.  Mobility of α/γ phase interfaces in Fe alloys , 2006 .

[9]  J. Hoffman Thermodynamic Driving Force in Nucleation and Growth Processes , 1958 .

[10]  E. .. Mittemeijer,et al.  Determination and interpretation of isothermal and non-isothermal transformation kinetics; the effective activation energies in terms of nucleation and growth , 2002 .

[11]  S. Zwaag,et al.  An in situ hot stage transmission electron microscopy study of the decomposition of Fe-C austenites , 1995, Journal of Materials Science.

[12]  M. Avrami Kinetics of Phase Change. II Transformation‐Time Relations for Random Distribution of Nuclei , 1940 .

[13]  S. Sjöström,et al.  Influence of stresses on the kinetics of pearlitic transformation during continuous cooling , 1987 .

[14]  E. J. Mittemeijer,et al.  The kinetics of the austenite–ferrite phase transformation of Fe-Mn: differential thermal analysis during cooling , 2002 .

[15]  C. Bos,et al.  Analysis of solid state phase transformation kinetics: models and recipes , 2007 .

[16]  Schwarz,et al.  Thermodynamics of open two-phase systems with coherent interfaces. , 1995, Physical review letters.

[17]  Yongchang Liu,et al.  Abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys , 2003 .

[18]  P. Villares,et al.  A theoretical method for determining the crystallized fraction and kinetic parameters by DSC, using non-isothermal techniques , 1996 .

[19]  H. Singh,et al.  Stability limit of supercooled liquids , 1983 .

[20]  F. Sommer,et al.  Determination of nucleation and growth mechanisms of the crystallization of amorphous alloys; application to calorimetric data , 2004 .

[21]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[22]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[23]  Carl V. Thompson,et al.  On the approximation of the free energy change on crystallization , 1979 .

[24]  E. Kozeschnik,et al.  High-speed quenching dilatometer investigation of the austenite-to-ferrite transformation in a low to ultralow carbon steel , 2006 .

[25]  F. Liu,et al.  An extended analytical model for solid-state phase transformation upon continuous heating and cooling processes: Application in γ/α transformation , 2012 .

[26]  F. Sommer,et al.  The austenite-ferrite transformation of ultralow-carbon Fe-C alloy; transition from diffusion- to interface-controlled growth. , 2006 .

[27]  M. Avrami Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III , 1941 .

[28]  M. Shimotomai,et al.  Formation of aligned two-phase microstructures by applying a magnetic field during the austenite to ferrite transformation in steels , 2003 .

[29]  Feng Liu,et al.  Evaluation of the maximum transformation rate for determination of impingement mode upon near-equilibrium solid-state phase transformation , 2013 .

[30]  Mats Hillert,et al.  Solute drag, solute trapping and diffusional dissipation of Gibbs energy 1 1 This paper is based on , 1999 .

[31]  S. Zwaag,et al.  Application of interrupted cooling experiments to study the mechanism of bainitic ferrite formation in steels , 2013 .

[32]  A. Petford-Long,et al.  Comparing the Johnson–Mehl–Avrami–Kolmogorov equations for isothermal and linear heating conditions , 2001 .

[33]  A. Faleiros,et al.  Kinetics of phase change , 2000 .

[34]  M. Avrami Kinetics of Phase Change. I General Theory , 1939 .

[35]  F. Sommer,et al.  Kinetics of the abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys , 2004 .

[36]  W. A. Johnson Reaction Kinetics in Processes of Nucleation and Growth , 1939 .

[37]  Yiyi Li,et al.  Modeling the austenite-ferrite diffusive transformation during continuous cooling on a mesoscale using Monte Carlo method , 2004 .

[38]  S. Zwaag,et al.  A study on the austenite-to-ferrite phase transformation in binary substitutional iron alloys , 2000 .

[39]  Zhi-gang Wang,et al.  Coupling between stress, temperature, and metallic structures during processes involving phase transformations , 1985 .

[40]  H. Aaronson,et al.  The kinetics of ferrite nucleation at austenite grain boundaries in Fe-C alloys , 1988 .

[41]  M. Avrami,et al.  Kinetics of Phase Change 2 , 1940 .

[42]  S. Zwaag,et al.  A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe–C–M alloys , 2014 .