Intuitionistic model constructions and normalization proofs
暂无分享,去创建一个
[1] Ulrich Berger,et al. An inverse of the evaluation functional for typed lambda -calculus , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[2] Thierry Coquand,et al. Pattern Matching with Dependent Types , 1992 .
[3] Thorsten Altenkirch,et al. A user's guide to {ALF , 1994 .
[4] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part , 1975 .
[5] Bengt Nordström,et al. Programming in Martin-Lo¨f's type theory: an introduction , 1990 .
[6] Martin Hofmann,et al. Categorical Reconstruction of a Reduction Free Normalization Proof , 1995, Category Theory and Computer Science.
[7] Harold T. Hodes,et al. The | lambda-Calculus. , 1988 .
[8] Bengt Nordström,et al. Programming in Martin-Löf's Type Theory , 1990 .
[9] Per Martin-Löuf. About Models for Intuitionistic Type Theories and the Notion of Definitional Equality , 1975 .
[10] P. Dybjer. Inductive sets and families in Martin-Lo¨f's type theory and their set-theoretic semantics , 1991 .
[11] John C. Mitchell,et al. Notes on Sconing and Relators , 1992, CSL.
[12] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[13] J. Roger Hindley,et al. Introduction to Combinators and Lambda-Calculus , 1986 .
[14] Torben Æ. Mogensen. Efficient self-interpretation in lambda calculus , 1992, Journal of Functional Programming.
[15] Robin Milner,et al. Definition of standard ML , 1990 .
[16] Catarina Coquand,et al. From Semantics to Rules: A Machine Assisted Analysis , 1993, CSL.
[17] Roel de Vrijer,et al. Exactly estimating functionals and strong normalization , 1987 .
[18] Torben Mogensen Diku. Eecient Self-interpretation in Lambda Calculus , 1994 .
[19] P. J. Landin. The Mechanical Evaluation of Expressions , 1964, Comput. J..
[20] Per Martin-Löf,et al. An intuitionistic theory of types , 1972 .
[21] Ulrich Berger,et al. Program Extraction from Normalization Proofs , 2006, Stud Logica.
[22] Peter Lee,et al. Metacircularity in the Polymorphic lambda-Calculus , 1991, Theor. Comput. Sci..
[23] Thomas Streicher,et al. Correctness and completeness of a categorical semantics of the calculus of constructions , 1989 .
[24] Joseph E. Stoy,et al. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory , 1981 .
[25] de Ng Dick Bruijn,et al. Telescopic Mappings in Typed Lambda Calculus , 1991, Inf. Comput..
[26] J. Lambek,et al. Introduction to higher order categorical logic , 1986 .