Discretizations in isogeometric analysis of Navier-Stokes flow

This paper deals with isogeometric analysis of 2-dimensional, steady state, incompressible Navier–Stokes flow subjected to Dirichlet boundary conditions. We present a detailed description of the numerical method used to solve the boundary value problem. Numerical inf–sup stability tests for the simplified Stokes problem confirm the existence of many stable discretizations of the velocity and pressure spaces, and in particular show that stability may be achieved by means of knot refinement of the velocity space. Error convergence studies for the full Navier–Stokes problem show optimal convergence rates for this type of discretizations. Finally, a comparison of the results of the method to data from the literature for the lid-driven square cavity for Reynolds numbers up to 10,000 serves as benchmarking of the discretizations and confirms the robustness of the method.

[1]  E. Erturk,et al.  Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers , 2004, ArXiv.

[2]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[3]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[4]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[5]  Klaus-Jürgen Bathe,et al.  The inf–sup condition and its evaluation for mixed finite element methods , 2001 .

[6]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[7]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[8]  Long Lee,et al.  A class of high-resolution algorithms for incompressible flows , 2010 .

[9]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[10]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[11]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[12]  J. Reddy,et al.  The Finite Element Method in Heat Transfer and Fluid Dynamics , 1994 .

[13]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[14]  Andrea Bressan,et al.  Isogeometric regular discretization for the Stokes problem , 2011 .

[15]  Giancarlo Sangalli,et al.  IsoGeometric Analysis: Stable elements for the 2D Stokes equation , 2011 .

[16]  Maxim A. Olshanskii,et al.  On the accuracy of the rotation form in simulations of the Navier-Stokes equations , 2009, J. Comput. Phys..

[17]  K. Bathe,et al.  The inf-sup test , 1993 .

[18]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[19]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[20]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[21]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .