A Fast Labeled Multi-Bernoulli Filter Using Belief Propagation

We propose a fast labeled multi-Bernoulli (LMB) filter that uses belief propagation for probabilistic data association. The complexity of our filter scales only linearly in the numbers of Bernoulli components and measurements, while the performance is comparable to or better than that of the Gibbs sampler-based LMB filter.

[1]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[2]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .

[3]  Manuel Stuebler,et al.  A fast implementation of the Labeled Multi-Bernoulli filter using gibbs sampling , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[4]  Jason L. Williams,et al.  Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[6]  Ba-Ngu Vo,et al.  Multiple Extended Target Tracking With Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[7]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[8]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[9]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[10]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[11]  Franz Hlawatsch,et al.  Sequential Monte Carlo implementation of the track-oriented marginal multi-Bernoulli/poisson filter , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[12]  Ba-Ngu Vo,et al.  A Generalized Labeled Multi-Bernoulli filter for maneuvering targets , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[13]  Paolo Braca,et al.  A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors , 2016, IEEE Transactions on Signal Processing.

[14]  Klaus C. J. Dietmayer,et al.  The Adaptive Labeled Multi-Bernoulli Filter , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[15]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .

[16]  Jason L. Williams,et al.  Approximate evaluation of marginal association probabilities with belief propagation , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Moe Z. Win,et al.  Message Passing Algorithms for Scalable Multitarget Tracking , 2018, Proceedings of the IEEE.

[18]  Robin J. Evans,et al.  Fundamentals of Object Tracking , 2011 .

[19]  Jason L. Williams,et al.  Data association by loopy belief propagation , 2010, 2010 13th International Conference on Information Fusion.

[20]  Wolfgang Koch Tracking and Sensor Data Fusion: Methodological Framework and Selected Applications , 2013 .

[21]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.