Modeling and Inference with Relational Dynamic Bayesian Networks

The explicit recognition of the relationships between interacting objects can improve the understanding of their dynamic domain. In this work, we investigate the use of Relational Dynamic Bayesian Networks to represent the dependencies between the agents' behaviors in the context of multi-agents tracking. We propose a new formulation of the transition model that accommodates for relations and we extend the Particle Filter algorithm in order to directly track relations between the agents. Many applications can benefit from this work, including terrorist activities recognition, traffic monitoring, strategic analysis and sports.

[1]  Takeo Kanade,et al.  A System for Video Surveillance and Monitoring , 2000 .

[2]  Ramakant Nevatia,et al.  Segmentation and Tracking of Multiple Humans in Crowded Environments , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Pedro M. Domingos,et al.  Relational Dynamic Bayesian Networks , 2005, J. Artif. Intell. Res..

[4]  Songhwai Oh,et al.  Markov chain Monte Carlo data association for general multiple-target tracking problems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  Jitendra Malik,et al.  An integrated stereo-based approach to automatic vehicle guidance , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Sabine Glesner,et al.  Constructing Flexible Dynamic Belief Networks from First-Order Probalistic Knowledge Bases , 1995, ECSQARU.

[7]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.

[8]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2004, International Journal of Computer Vision.

[9]  Stuart J. Russell,et al.  General-Purpose MCMC Inference over Relational Structures , 2006, UAI.

[10]  Michael Harville,et al.  Stereo person tracking with adaptive plan-view templates of height and occupancy statistics , 2004, Image Vis. Comput..

[11]  Stephen J. McKenna,et al.  Tracking interacting people , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[12]  Sebastian Thrun,et al.  Recognizing Activities with Multiple Cues , 2007, Workshop on Human Motion.

[13]  Daphne Koller,et al.  Probabilistic Relational Models , 1999, ILP.

[14]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[15]  Stephen J. McKenna,et al.  Tracking human motion using auxiliary particle filters and iterated likelihood weighting , 2007, Image Vis. Comput..

[16]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[17]  Aaron F. Bobick,et al.  Recognition of Visual Activities and Interactions by Stochastic Parsing , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[19]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[20]  Jake K. Aggarwal,et al.  Recognition of Composite Human Activities through Context-Free Grammar Based Representation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Stefano Soatto,et al.  Dynamic Textures , 2003, International Journal of Computer Vision.

[22]  Tapani Raiko,et al.  "Say EM" for Selecting Probabilistic Models for Logical Sequences , 2005, UAI.

[23]  Domenico G. Sorrenti,et al.  Parallel First-Order Markov Chain for On-Line Anomaly Detection in Traffic Video Surveillance , 2006 .

[24]  Francesco Archetti,et al.  Foreground-to-Ghost Discrimination in Single-Difference Pre-processing , 2006, ACIVS.

[25]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[26]  Avi Pfeffer,et al.  Structured Representation of Complex Stochastic Systems , 1998, AAAI/IAAI.

[27]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[28]  Hamid Aghajan,et al.  Video-based freeway-monitoring system using recursive vehicle tracking , 1995, Electronic Imaging.

[29]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Irfan A. Essa,et al.  Recognizing multitasked activities from video using stochastic context-free grammar , 2002, AAAI/IAAI.

[31]  M. Studený,et al.  On chain graph models for description of conditional independence structures , 1998 .

[32]  Tiziana D'Orazio,et al.  An energy-based background modelling algorithm for motion detection , 2006, ICINCO-RA.

[33]  Richard J. Qian,et al.  Detecting semantic events in soccer games: towards a complete solution , 2001, IEEE International Conference on Multimedia and Expo, 2001. ICME 2001..

[34]  Pedro M. Domingos,et al.  Relational Markov models and their application to adaptive web navigation , 2002, KDD.

[35]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[36]  Judea Pearl,et al.  Probabilistic reasoning using graphs , 1987, International Conference on Information Processing and Management of Uncertainty.

[37]  Andrew Webb,et al.  Bayesian Networks for Incorporation of Contextual Information in Target Recognition Systems , 2002, SSPR/SPR.

[38]  Yuan Li,et al.  A Bayesian Network Model under Group Decision Making for Evaluating IT Outsourcing Risk , 2008, 2008 International Conference on Risk Management & Engineering Management.

[39]  Martial Hebert,et al.  Event Detection in Crowded Videos , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[40]  Ramakant Nevatia,et al.  Video-based event recognition: activity representation and probabilistic recognition methods , 2004, Comput. Vis. Image Underst..

[41]  N. Kanwisher,et al.  PSYCHOLOGICAL SCIENCE Research Article Visual Recognition As Soon as You Know It Is There, You Know What It Is , 2022 .

[42]  H. B. Mitchell Markov Random Fields , 1982 .

[43]  Ingemar J. Cox,et al.  Modeling a Dynamic Environment Using a Bayesian Multiple Hypothesis Approach , 1994, Artif. Intell..

[44]  Roger D. Boyle,et al.  Tracking multiple sports players through occlusion, congestion and scale , 2001, BMVC.

[45]  Daphne Koller,et al.  Learning Spatial Context: Using Stuff to Find Things , 2008, ECCV.

[46]  Larry S. Davis,et al.  Event Modeling and Recognition Using Markov Logic Networks , 2008, ECCV.

[47]  Rachid Deriche,et al.  Tracking line segments , 1990, Image Vis. Comput..

[48]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[49]  Lise Getoor,et al.  Learning Probabilistic Relational Models , 1999, IJCAI.

[50]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[51]  Robert Sedgewick,et al.  Algorithms in c, part 5: graph algorithms, third edition , 2001 .

[52]  Roni Khardon,et al.  First Order Decision Diagrams for Relational MDPs , 2007, IJCAI.

[53]  Manfred Jaeger,et al.  Relational Bayesian Networks , 1997, UAI.

[54]  Aaron F. Bobick,et al.  Visual recognition of multi-agent action using binary temporal relations , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[55]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[56]  Nir Friedman,et al.  Learning Module Networks , 2002, J. Mach. Learn. Res..

[57]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[58]  Matthew Richardson,et al.  Markov Logic: A Unifying Language for Structural and Statistical Pattern Recognition , 2008, SSPR/SPR.

[59]  Chandrika Kamath,et al.  Robust techniques for background subtraction in urban traffic video , 2004, IS&T/SPIE Electronic Imaging.

[60]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[61]  Gregory D. Hager,et al.  Probabilistic Data Association Methods for Tracking Complex Visual Objects , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[63]  Chengcui Zhang,et al.  Adaptive background learning for vehicle detection and spatio-temporal tracking , 2003, Fourth International Conference on Information, Communications and Signal Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003 Joint.

[64]  Francesco Archetti,et al.  Relational clustering for gene expression profiles and drug activity pattern analysis , 2007 .

[65]  Stuart J. Russell,et al.  Probabilistic models with unknown objects , 2006 .

[66]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[67]  Matteo Matteucci,et al.  A revaluation of frame difference in fast and robust motion detection , 2006, VSSN '06.

[68]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[69]  Jack Minker,et al.  Disjunctive Logic Programming: A Survey and Assessment , 2002, Computational Logic: Logic Programming and Beyond.

[70]  Michael Harville,et al.  Stereo Person Tracking with Adaptive Plan-View Statistical Templates , 2002 .

[71]  Manfred Jaeger,et al.  Parameter learning for relational Bayesian networks , 2007, ICML '07.

[72]  Luc De Raedt,et al.  Bayesian Logic Programs , 2001, ILP Work-in-progress reports.

[73]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[74]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[76]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[77]  Barbara Caputo,et al.  Local velocity-adapted motion events for spatio-temporal recognition , 2007, Comput. Vis. Image Underst..

[78]  Leonidas J. Guibas,et al.  Sensing, tracking and reasoning with relations , 2002, IEEE Signal Process. Mag..

[79]  Daphne Koller,et al.  Learning Object Shape: From Drawings to Images , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[80]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .