A-infinity algebras associated with curves and rational functions on M_{g,g}. I

We consider the natural A-infinity structure on the Ext-algebra $Ext^*(G,G)$ associated with the coherent sheaf $G={\cal O}_C\oplus {\cal O}_{p_1}\oplus...\oplus {\cal O}_{p_n}$ on a smooth projective curve $C$, where $p_1,...,p_n\in C$ are distinct points. We study the homotopy class of the product $m_3$. Assuming that $h^0(p_1+...+p_n)=1$ we prove that $m_3$ is homotopic to zero if and only if $C$ is hyperelliptic and the points $p_i$ are Weierstrass points. In the latter case we show that $m_4$ is not homotopic to zero, provided the genus of $C$ is at least 2. In the case $n=g$ we prove that the A-infinity structure is determined uniquely (up to homotopy) by the products $m_i$ with $i\le 6$. Also, in this case we study the rational map ${\cal M}_{g,g}\to {\Bbb A}^{g^2-2g}$ associated with the homotopy class of $m_3$. We prove that for $g\ge 6$ it is birational onto its image, while for $g\le 5$ it is dominant. We also give an interpretation of this map in terms of tangents to $C$ in the canonical embedding and in the projective embedding given by the linear series $|2(p_1+...+p_g)|$.

[1]  Daniel Lowengrub,et al.  Deformation in Theory , 2014 .

[2]  Robert R. Fisette The A-infinity Algebra of a Curve and the J-invariant , 2012 .

[3]  T. Perutz,et al.  Fukaya categories of the torus and Dehn surgery , 2011, Proceedings of the National Academy of Sciences.

[4]  A. Polishchuk A∞-Algebra of an Elliptic Curve and Eisenstein Series , 2009, 0911.2814.

[5]  Siye Wu,et al.  Massey Product and Twisted Cohomology of A-infinity Algebras , 2009, 0912.1775.

[6]  A. Kapustin,et al.  Homological Mirror Symmetry for manifolds of general type , 2009, 1004.0129.

[7]  A. Efimov Homological mirror symmetry for curves of higher genus , 2009, 0907.3903.

[8]  Bertrand Toën Finitude homotopique des dg‐algèbres propres et lisses , 2009 .

[9]  P. Seidel Homological mirror symmetry for the genus two curve , 2008, 0812.1171.

[10]  A. Samokhin Some remarks on the derived categories of coherent sheaves on homogeneous spaces , 2006, math/0612800.

[11]  J. J. Zhang,et al.  A-INFINITY STRUCTURE ON EXT-ALGEBRAS , 2006, math/0606144.

[12]  B. Keller A-infinity algebras, modules and functor categories , 2005, math/0510508.

[13]  A. Polishchuk EXTENSIONS OF HOMOGENEOUS COORDINATE RINGS TO A1-ALGEBRAS , 2003 .

[14]  B. Shipley An Algebraic Model for Rational S1‐Equivariant Stable Homotopy Theory , 2001, math/0108141.

[15]  A. Polishchuk Triple Massey products on curves, Fay's trisecant identity and tangents to the canonical embedding , 2001, math/0107194.

[16]  M. Kontsevich,et al.  Homological mirror symmetry and torus fibrations , 2000, math/0011041.

[17]  Bernhard Keller,et al.  Introduction to $A$-infinity algebras and modules , 1999, math/9910179.

[18]  S. Merkulov Strong homotopy algebras of a Kähler manifold , 1998 .

[19]  Michael Bardzell,et al.  The Alternating Syzygy Behavior of Monomial Algebras , 1997 .

[20]  S. I. Gelʹfand,et al.  Methods of Homological Algebra , 1996 .

[21]  J. Wahl Gaussian maps on algebraic curves , 1990 .

[22]  R. Lazarsfeld,et al.  Some results on the syzygies of finite sets and algebraic curves , 1988 .

[23]  Jon P. May Matric Massey products , 1969 .

[24]  J. Cohen,et al.  The decomposition of stable homotopy. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jim Stasheff,et al.  Homotopy associativity of $H$-spaces. II , 1963 .

[26]  A. L.,et al.  PERTURBATION THEORY IN DIFFERENTIAL HOMOLOGICAL ALGEBRA I , 2022 .