Current-Voltage Relations for Electrochemical Thin Films

The DC response of an electrochemical thin film, such as the separator in a microbattery, is analyzed by solving the Poisson--Nernst--Planck equations, subject to boundary conditions appropriate for an electrolytic/galvanic cell. The model system consists of a binary electrolyte between parallel-plate electrodes, each possessing a compact Stern layer, which mediates Faradaic reactions with nonlinear Butler--Volmer kinetics. Analytical results are obtained by matched asymptotic expansions in the limit of thin double layers and compared with full numerical solutions. The analysis shows that (i) decreasing the system size relative to the Debye screening length decreases the voltage of the cell and allows currents higher than the classical diffusion-limited current; (ii) finite reaction rates lead to the important possibility of a reaction-limited current; (iii) the Stern-layer capacitance is critical for allowing the cell to achieve currents above the reaction-limited current; and (iv) all polarographic (cur...

[1]  D. Grahame Differential Capacity of Mercury in Aqueous Sodium Fluoride Solutions. I. Effect of Concentration at 25 , 1954 .

[2]  P. Delahay,et al.  Double Layer and Electrode Kinetics , 1965 .

[3]  A. Frumkin,et al.  Wasserstoffüberspannung und Struktur der Doppelschicht , 1933 .

[4]  John Newman,et al.  Double layer structure at the limiting current , 1967 .

[5]  J. Newman,et al.  THE POLARIZED, DIFFUSE DOUBLE LAYER , 1965 .

[6]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[7]  G. Jaffe,et al.  On Polarization in Liquid Dielectrics , 1953 .

[8]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[9]  J. Macdonald Theory of the Differential Capacitance of the Double Layer in Unadsorbed Electrolytes , 1954 .

[10]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[11]  O. Stern ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT , 1924, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[12]  Robert S. Eisenberg,et al.  Ion flow through narrow membrane channels: part II , 1992 .

[13]  R. Parsons Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces , 1997 .

[14]  J. Macdonald Static Space Charge and Capacitance for a Single Blocking Electrode , 1958 .

[15]  M. Bazant,et al.  Asymptotic Analysis of Diffuse-Layer Effects on Time-Dependent Interfacial Kinetics , 2000, cond-mat/0006104.

[16]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[17]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[18]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[19]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[20]  H. Kaesche The Kinetics of Electrode Reactions , 2003 .

[21]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .

[22]  Hiroyuki Hasebe,et al.  Laminated Thin Li-Ion Batteries Using a Liquid Electrolyte , 2002 .

[23]  Leonid Shtilman,et al.  Voltage against current curves of cation exchange membranes , 1979 .

[24]  Kinetics of Electrode Reactions , 1966 .

[25]  É. Itskovich,et al.  Electric current across the metal–solid electrolyte interface I. Direct current, current–voltage characteristic , 1977 .

[26]  A. Macgillivray,et al.  Nernst‐Planck Equations and the Electroneutrality and Donnan Equilibrium Assumptions , 1968 .

[27]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[28]  W. Nernst,et al.  Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[29]  Martin Z. Bazant,et al.  INDUCED CHARGE ELECTRO-OSMOSIS : THEORY AND MICROFLUIDIC APPLICATIONS , 2004 .

[30]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  L. A. Geddes,et al.  Historical evolution of circuit models for the electrode-electrolyte interface , 2007, Annals of Biomedical Engineering.

[32]  Gerbrand Ceder,et al.  Solid State Thin Film Lithium Microbatteries , 2003 .

[33]  Erich Brunner,et al.  Reaktionsgeschwindigkeit in heterogenen Systemen , 1904 .

[34]  R. J. Hunter Foundations of Colloid Science , 1987 .

[35]  Erich Brunner Die kathodische und anodische Stromspannungskurve bei der Elektrolyse von Jod-Jodkaliumlösungen , 1907 .

[36]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[37]  Hung-Chih Chang,et al.  Polarization in Electrolytic Solutions. Part I. Theory , 1952 .

[38]  A. Kornyshev,et al.  Conductivity and space charge phenomena in solid electrolytes with one mobile charge carrier species, a review with original material , 1981 .

[39]  Martin Z. Bazant,et al.  Electrochemical Thin Films at and above the Classical Limiting Current , 2005, SIAM J. Appl. Math..

[40]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[41]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[42]  Brian C. Sales,et al.  Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes , 1996 .

[43]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .