Orthopyroxene + sillimanite predating sapphirine + quartz: A rare case of ultrahigh-temperature metamorphism from the central zone, limpopo complex, South Africa

Sapphirine + quartz and orthopyroxene + sillimanite occur in garnet from an Mg-Al granulite from the Central Zone of the Limpopo Complex in South Africa. Textural evidence and a chemical gradient in garnet between the zones preserving the inclusions argue for the formation of sapphirine + quartz after orthopyroxene + sillimanite. Petrological observations, pressure-temperature phase diagrams, and compositional and model proportion results on isopleths indicate the sapphirine + quartz + garnet + orthopyroxene (high-Al) assemblage as the peak metamorphic assemblage (similar to 1050 degrees C at similar to 8.5 kbars), whereas orthopyroxene (low-Al) + sillimanite represents the prograde stage (at ca. 900 degrees C at similar to 8.5 kbars). Our report of these two diagnostic ultrahigh-temperature mineral assemblages in garnet from an Mg-Al granulite is unique, given the rare occurrence of sapphirine + quartz postdating orthopyroxene + sillimanite assemblage in granulites.

[1]  M. J. Rigby Conflicting P-T paths within the Central Zone of the Limpopo Belt: A consequence of different thermobarometric methods? , 2009 .

[2]  R. Armstrong,et al.  Geochronological problems related to polymetamorphism in the Limpopo Complex, South Africa , 2008 .

[3]  D. Varlamov,et al.  P–T record of two high-grade metamorphic events in the Central Zone of the Limpopo Complex, South Africa , 2008 .

[4]  S. Harley Refining the P–T records of UHT crustal metamorphism , 2008 .

[5]  D. Kelsey On ultrahigh-temperature crustal metamorphism , 2008 .

[6]  A. Gerdes,et al.  Archaean to Proterozoic Crustal Evolution in the Central Zone of the Limpopo Belt (South Africa^Botswana): Constraints from Combined U^Pb and Lu^Hf Isotope Analyses of Zircon , 2007 .

[7]  R. Klemd,et al.  Magmatic loading in the proterozoic Epupa Complex, NW Namibia, as evidenced by ultrahigh-temperature sapphirine-bearing orthopyroxene–sillimanite–quartz granulites , 2007 .

[8]  J. Kramers,et al.  The Limpopo Belt , 2007 .

[9]  D. D. Reenen,et al.  Corundum + quartz and Mg-staurolite bearing granulite from the Limpopo Belt, southern Africa: Implications for a P–T path , 2006 .

[10]  R. Armstrong,et al.  Geologic History of the Central Zone of the Limpopo Complex: The West Alldays Area , 2006, The Journal of Geology.

[11]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[12]  Y. Osanai,et al.  Ultrahigh-temperature Metamorphism (1150°C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka , 2004 .

[13]  R. Powell,et al.  Calculated phase equilibria in K2O‐FeO‐MgO‐Al2O3‐SiO2‐H2O for sapphirine‐quartz‐bearing mineral assemblages , 2004 .

[14]  T. Gerya,et al.  Structural and P–T Evolution of a Major Cross Fold in the Central Zone of the Limpopo High-Grade Terrain, South Africa , 2004 .

[15]  R. Klemd,et al.  Pro‐ and retrograde P–T evolution of granulites of the Beit Bridge Complex (Limpopo Belt, South Africa): constraints from quantitative phase diagrams and geotectonic implications , 2004 .

[16]  R. Powell,et al.  Orthopyroxene–sillimanite–quartz assemblages: distribution, petrology, quantitative P–T–X constraints and P–T paths , 2003 .

[17]  R. Fuck,et al.  Characterization and P–T Evolution of Melt-bearing Ultrahigh-temperature Granulites: an Example from the Anápolis–Itauçu Complex of the Brasília Fold Belt, Brazil , 2002 .

[18]  R. Powell,et al.  The interpretation of reaction textures in Fe‐rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 , 2002 .

[19]  T. Gerya,et al.  Comparative petrology and metamorphic evolution of the Limpopo (South Africa) and Lapland (Fennoscandia) high-grade terrains , 2000 .

[20]  Roger Powell,et al.  An internally consistent thermodynamic data set for phases of petrological interest , 1998 .

[21]  M. Guiraud,et al.  Petrological study of high-temperature granulites from In Ouzzal, Algeria; some implications on the phase relationships in the FMASTOCr systems , 1997 .

[22]  S. Boumaza,et al.  An example of ultrahigh-temperature metamorphism: orthopyroxene-sillimanite-garnet, sapphirine-quartz and spinel-quartz parageneses in Al-Mg granulites from In Hihaou, In Ouzzal, Hoggar , 1996 .

[23]  D. P. Carrington,et al.  Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system , 1995 .

[24]  I. Fitzsimons,et al.  THE INFLUENCE OF RETROGRADE CATION-EXCHANGE ON GRANULITE P-T ESTIMATES AND A CONVERGENCE TECHNIQUE FOR THE RECOVERY OF PEAK METAMORPHIC CONDITIONS , 1994 .

[25]  M. Coward,et al.  Himalayan-Tibetan analogies for the evolution of the Zimbabwe Craton and Limpopo Belt , 1992 .

[26]  G. Stevens,et al.  Tectonic model for the evolution of the Limpopo Belt , 1992 .

[27]  K. Ouzegane,et al.  P–T–X relationships in the Precambrian Al–Mg-rich granulites from In Ouzzal, Hoggar, Algeria , 1992 .

[28]  L. Anovitz Al zoning in pyroxene and plagioclase; window on late prograde to early retrograde P-T paths in granulite terranes , 1991 .

[29]  D. Green,et al.  The stability of sapphirine-quartz and hypersthene-sillimanite-quartz assemblages: an experimental investigation in the system FeO−MgO−Al2O3−SiO2 under H2O and CO2 conditions , 1991 .

[30]  T. Miyano,et al.  Granulite facies metamorphism in the Central and Southern Marginal Zones of the Limpopo Belt, South Africa. , 1989 .

[31]  R. Powell,et al.  Sapphirine and spinel phase relationships in the system FeO-MgO-Al2O3-SiO2-TiO2-O2 in the presence of quartz and hypersthene , 1988 .

[32]  C. Smith,et al.  Deep crystal response to continental collision: The Limpopo belt of southern Africa , 1987 .

[33]  F. Seifert,et al.  Stability of the assemblage orthopyroxene-sillimanite-quartz in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O , 1981 .

[34]  J. W. Sheraton,et al.  Osumilite-sapphirine-quartz granulites from Enderby Land Antarctica — Mineral assemblages and reactions , 1980 .

[35]  S. Morse,et al.  Occurrence of sapphirine plus quartz at Peekskill, New York , 1978 .

[36]  D. Green,et al.  Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures , 1973 .