Antichains: Alternative Algorithms for LTL Satisfiability and Model-Checking

The linear temporal logic (LTL) was introduced by Pnueli as a logic to express properties over the computations of reactive systems. Since this seminal work, there have been a large number of papers that have studied deductive systems and algorithmic methods to reason about the correctness of reactive programs with regard to LTL properties. In this paper, we propose new efficient algorithms for LTL satisfiability and model-checking. Our algorithms do not construct nondeterministic automata from LTL formulas but work directly with alternating automata using efficient exploration techniques based on antichains.

[1]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[2]  Thomas A. Henzinger,et al.  From verification to control: dynamic programs for omega-regular objectives , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[3]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[4]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[5]  Thomas A. Henzinger,et al.  From Pre-historic to Post-modern Symbolic Model Checking , 1998, CAV.

[6]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[7]  G. S. Graham A New Solution of Dijkstra ' s Concurrent Programming Problem , 2022 .

[8]  Moshe Y. Vardi,et al.  LTL Satisfiability Checking , 2007, SPIN.

[9]  Jean-François Raskin,et al.  Improved Algorithms for the Automata-Based Approach to Model-Checking , 2007, TACAS.

[10]  Thomas Wilke,et al.  Simulation relations for alternating Büchi automata , 2005, Theor. Comput. Sci..

[11]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[12]  Orna Kupferman,et al.  On Complementing Nondeterministic Büchi Automata , 2003, CHARME.

[13]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[14]  Gareth S. Rohde,et al.  Alternating automata and the temporal logic of ordinals , 1997 .

[15]  Faron Moller,et al.  Logics for Concurrency , 1996, Lecture Notes in Computer Science.

[16]  Karsten Stahl,et al.  Abstracting WS1S Systems to Verify Parameterized Networks , 2000, TACAS.

[17]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[18]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[19]  Andreas Podelski,et al.  ACSAR: Software Model Checking with Transfinite Refinement , 2007, SPIN.

[20]  Fausto Giunchiglia,et al.  NUSMV: a new symbolic model checker , 2000, International Journal on Software Tools for Technology Transfer.

[21]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[22]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[23]  Borivoj Melichar,et al.  Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.

[24]  Moshe Y. Vardi,et al.  Symbolic systems, explicit properties: on hybrid approaches for LTL symbolic model checking , 2005, International Journal on Software Tools for Technology Transfer.

[25]  Gerard J. Holzmann,et al.  Advanced SPIN Tutorial , 2004, SPIN.

[26]  Fabio Somenzi,et al.  CUDD: CU Decision Diagram Package Release 2.2.0 , 1998 .

[27]  Edmund M. Clarke,et al.  Another Look at LTL Model Checking , 1994, Formal Methods Syst. Des..

[28]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[29]  George J. Milne,et al.  Correct Hardware Design and Verification Methods , 2003, Lecture Notes in Computer Science.