Chapter 1 Central metabolism of the archaea

[1]  D. Oesterhelt,et al.  Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid:ferredoxin oxidoreductases. , 2005, European journal of biochemistry.

[2]  N. Vettakkorumakankav,et al.  Dihydrolipoamide dehydrogenase from Haloferax volcanii: gene cloning, complete primary structure, and comparison to other dihydrolipoamide dehydrogenases. , 1992, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[3]  D. Oesterhelt,et al.  Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium. , 1992, European journal of biochemistry.

[4]  K. James,et al.  Citrate synthase from Haloferax volcanii: enzyme purification and gene cloning. , 1992, Biochemical Society transactions.

[5]  G. Taylor,et al.  Crystallization and preliminary crystallographic study of glucose dehydrogenase from the archaebacterium Thermoplasma acidophilum. , 1991, Journal of molecular biology.

[6]  W. Altekar,et al.  Ketohexokinase (ATP: d‐fructose 1‐phosphotransferase) initiates fructose breakdown via the modified EMP pathway in halophilic archaebacteria , 1991 .

[7]  R. Perham Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. , 1991, Biochemistry.

[8]  S Mukund,et al.  The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. , 1991, The Journal of biological chemistry.

[9]  D. Hough,et al.  Expression and purification of plasmid‐encoded Thermoplasma acidophilum citrate synthase from Escherichia coli , 1991, FEBS letters.

[10]  R. Chiaraluce,et al.  Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1991, European journal of biochemistry.

[11]  E. Cadenas,et al.  Analysis of the kinetic mechanism of halophilic NADP-dependent glutamate dehydrogenase. , 1990, Biochimica et biophysica acta.

[12]  D. Hough,et al.  Citrate synthase from the thermophilic archaebacterium Thermoplasma acidophilum , 1990 .

[13]  R. Hensel,et al.  Engineering thermostability in archaebacterial glyceraldehyde‐3‐phosphate dehydrogenase Hints for the important role of interdomain contacts in stabilizing protein conformation , 1990, FEBS letters.

[14]  A. Böck,et al.  PHYLOGENETIC POSITIONING OF ARCHAEBACTERIA ON THE BASIS OF RIBOSOMAL PROTEIN SEQUENCES , 1990 .

[15]  F. Opperdoes,et al.  Subcellular localisation of dihydrolipoamide dehydrogenase and detection of lipoic acid in bloodstream forms of Trypanosoma brucei. , 1990, European journal of biochemistry.

[16]  J. Casazza,et al.  Mutation of essential catalytic residues in pig citrate synthase. , 1990, Biochemistry.

[17]  P. Zwickl,et al.  Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli , 1990, Journal of bacteriology.

[18]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[19]  W. Altekar,et al.  Indication of a modified EMP pathway for fructose breakdown in a halophilic archaebacterium , 1990 .

[20]  S. Horinouchi,et al.  Cloning of genes responsible for acetic acid resistance in Acetobacter aceti , 1990, Journal of bacteriology.

[21]  T. Niermann,et al.  Properties and primary structure of the L-malate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus. , 1990, European journal of biochemistry.

[22]  H. Eisenberg,et al.  Stabilization of halophilic malate dehydrogenase. , 1989, Journal of molecular biology.

[23]  Z. Dauter,et al.  Preliminary X-ray crystallographic study of malate dehydrogenases from the thermoacidophilic Archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. , 1989, Journal of molecular biology.

[24]  D. Osguthorpe,et al.  Sequence alignment of citrate synthase proteins using a multiple sequence alignment algorithm and multiple scoring matrices. , 1989, Protein engineering.

[25]  C. Carles,et al.  Detection of bacterial lipoic acid. A modified gas-chromatographic-mass-spectrometric procedure. , 1989, The Biochemical journal.

[26]  T. Niermann,et al.  Nucleotide sequence of the glyceraldehyde-3-phosphate dehydrogenase gene from the mesophilic methanogenic archaebacteria Methanobacterium bryantii and Methanobacterium formicicum. Comparison with the respective gene structure of the closely related extreme thermophile Methanothermus fervidus. , 1989, European journal of biochemistry.

[27]  T. S. Barber,et al.  Vitamin contents of archaebacteria , 1988, Journal of bacteriology.

[28]  R. Kelly,et al.  Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations , 1988 .

[29]  M. Danson,et al.  A new spectrophotometric assay for citrate synthase and its use to assess the inhibitory effects of palmitoyl thioesters. , 1988, The Biochemical journal.

[30]  R. Hensel,et al.  Primary structure of glyceraldehyde-3-phosphate dehydrogenase deduced from the nucleotide sequence of the thermophilic archaebacterium Methanothermus fervidus. , 1988, Gene.

[31]  J. Sussman,et al.  Crystallization of halophilic malate dehydrogenase from Halobacterium marismortui. , 1988, Journal of molecular biology.

[32]  M. Danson Dihydrolipoamide dehydrogenase: a 'new' function for an old enzyme? , 1988, Biochemical Society transactions.

[33]  K. Stetter,et al.  Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from Solfatara Fields , 1988 .

[34]  H. Duckworth,et al.  In vitro mutagenesis of Escherichia coli citrate synthase to clarify the locations of ligand binding sites. , 1988, The Journal of biological chemistry.

[35]  H. Eggerer,et al.  Purification and properties of an archaebacterial enzyme: citrate synthase from Sulfolobus solfataricus. , 1988, Biological chemistry Hoppe-Seyler.

[36]  D. Hough,et al.  Citrate synthase from the thermophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius , 1987 .

[37]  D. Hough,et al.  Dihydrolipoamide dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1987 .

[38]  G. Schäfer,et al.  The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Purification and immunological relationships to F1-ATPases. , 1987, European journal of biochemistry.

[39]  H. Inui,et al.  Purification and characterization of pyruvate:NADP+ oxidoreductase in Euglena gracilis. , 1987, The Journal of biological chemistry.

[40]  M. Danson,et al.  Dihydrolipoamide dehydrogenase from Trypanosoma brucei. Characterization and cellular location. , 1987, The Biochemical journal.

[41]  G. Schäfer,et al.  A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. , 1987, European journal of biochemistry.

[42]  D. Raleigh,et al.  13C NMR spectroscopy of Methanobacterium thermoautotrophicum. Carbon fluxes and primary metabolic pathways. , 1986, The Journal of biological chemistry.

[43]  M. Danson,et al.  Dihydrolipoamide dehydrogenase from halophilic archaebacteria: purification and properties of the enzyme from halobacterium halobium , 1986 .

[44]  D. Searcy Some features of thermo-acidophilic archaebacteria preadaptive for the evolution of eukaryotic cells , 1986 .

[45]  T. Oshima,et al.  Membrane-bound ATPase and electron transport system of Sulfolobus acidocaldarius* , 1986 .

[46]  I. Ekiel,et al.  Mevalonic acid is partially synthesized from amino acids in Halobacterium cutirubrum: a 13C nuclear magnetic resonance study , 1986, Journal of bacteriology.

[47]  M. Danson,et al.  Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .

[48]  M. Roberts,et al.  2,3-Cyclopyrophosphoglycerate in methanogens: evidence by 13C NMR spectroscopy for a role in carbohydrate metabolism. , 1985, Biochemistry.

[49]  H. Görisch,et al.  Partial purification and properties of citrate synthases from the thermoacidophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius , 1985 .

[50]  I. Ekiel,et al.  Amino acid biosynthesis and sodium-dependent transport in Methanococcus voltae, as revealed by 13C NMR. , 1985, European journal of biochemistry.

[51]  M. de Rosa,et al.  Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.

[52]  R. Huber,et al.  Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. , 1984, Journal of molecular biology.

[53]  F. R. Whatley,et al.  Thermoplasma acidophilum: Glucose Degradative Pathways and Respiratory Activities , 1984 .

[54]  J Deisenhofer,et al.  Crystal structure analysis and molecular model of a complex of citrate synthase with oxaloacetate and S-acetonyl-coenzyme A. , 1984, Journal of molecular biology.

[55]  R. Eisenthal,et al.  Dihydrolipoamide dehydrogenase from halophilic archaebacteria. , 1984, The Biochemical journal.

[56]  I. Ekiel,et al.  Biosynthetic pathways in Methanospirillum hungatei as determined by 13C nuclear magnetic resonance , 1983, Journal of bacteriology.

[57]  D. Fahrney,et al.  A novel diphospho-P,P'-diester from Methanobacterium thermoautotrophicum. , 1983, The Journal of biological chemistry.

[58]  M. Roberts,et al.  Methanophosphagen: Unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D. Oesterhelt,et al.  Pyruvate : ferredoxin oxidoreductase — new findings on an ancient enzyme , 1982 .

[60]  D. Oesterhelt,et al.  Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. , 1981, European journal of biochemistry.

[61]  D. Oesterhelt,et al.  The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. One-electron transfer at two distinct steps of the catalytic cycle. , 1981, European journal of biochemistry.

[62]  J. Zeikus,et al.  Acetate assimilation pathway of Methanosarcina barkeri , 1979, Journal of bacteriology.

[63]  L. Daniels,et al.  One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells , 1978, Journal of bacteriology.

[64]  J. Zeikus,et al.  Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicum , 1977, Journal of bacteriology.

[65]  A. D. Brown,et al.  Citrate and glyoxylate cycles in the halophil, Halobacterium salinarium. , 1969, Biochimica et biophysica acta.

[66]  H. Eisenberg,et al.  Biochemical, structural, and molecular genetic aspects of halophilism. , 1992, Advances in protein chemistry.

[67]  R. Hensel,et al.  Cloning and sequencing the gene encoding 3-phosphoglycerate kinase from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. , 1990, Gene.

[68]  A. Spormann,et al.  Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. , 1989, Annual review of microbiology.

[69]  M. Danson Central metabolism of the archaebacteria: an overview. , 1989, Canadian journal of microbiology.

[70]  M. Danson Archaebacteria: the comparative enzymology of their central metabolic pathways. , 1988, Advances in microbial physiology.

[71]  P. Handford,et al.  Site-directed mutagenesis of citrate synthase; the role of the active-site aspartate in the binding of acetyl-CoA but not oxaloacetate. , 1988, Biochimica et biophysica acta.

[72]  H. Gest Evolutionary roots of the citric acid cycle in prokaryotes. , 1987, Biochemical Society symposium.

[73]  M. Danson,et al.  Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase , 1985 .

[74]  P. Weitzman Unity and diversity in some bacterial citric acid-cycle enzymes. , 1981, Advances in microbial physiology.

[75]  L. Hochstein The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.

[76]  L. Hochstein,et al.  Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. , 1972, Canadian journal of microbiology.

[77]  L. Hochstein,et al.  Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. , 1972, Canadian journal of microbiology.