Discrete Ingham Inequalities and Applications

In this paper we prove a discrete version of the classical Ingham inequality for nonharmonic Fourier series whose exponents satisfy a gap condition. Time integrals are replaced by discrete sums on a discrete mesh. We prove that, as the mesh becomes finer and finer, the limit of the discrete Ingham inequality is the classical continuous one. This analysis is partially motivated by control-theoretical issues. As an application we analyze the control/observation properties of numerical approximation schemes of the 1-d wave equation. The discrete Ingham inequality provides observability and controllability results which are uniform with respect to the mesh-size in suitable classes of numerical solutions in which the high frequency components have been filtered. We also discuss the optimality of these results in connection with the dispersion diagrams of the numerical schemes.

[1]  L. Carleson,et al.  The Collected Works of Arne Beurling , 1989 .

[2]  Une remarque sur les séries de Fourier non-harmoniques et son application à la contrôlabilité des cordes avec densité singulière , 1996 .

[3]  V. Komornik Exact Controllability and Stabilization: The Multiplier Method , 1995 .

[4]  김정기,et al.  Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.

[5]  L. Trefethen Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .

[6]  Famille de schémas implicites uniformément contrôlables pour l'équation des ondes 1-D , 2004 .

[7]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[8]  Sergei Avdonin,et al.  Ingham-type inequalities and Riesz bases of divided differences , 2001 .

[9]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[10]  A. Ingham Some trigonometrical inequalities with applications to the theory of series , 1936 .

[11]  M. Slemrod,et al.  Nonharmonic fourier series and the stabilization of distributed semi‐linear control systems , 1979 .

[12]  D. L. Russell Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .

[13]  Carlos Castro,et al.  Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method , 2006, Numerische Mathematik.

[14]  Enrique Zuazua,et al.  On a theorem of Ingham , 1997 .

[15]  Enrique Zuazua,et al.  Uniform boundary controllability of a discrete 1-D wave equation , 2003, Syst. Control. Lett..

[16]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[17]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[18]  E. Zuazua Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .

[19]  Enrique Zuazua,et al.  SINGULAR INTERNAL STABILIZATION OF THE WAVE EQUATION , 1998 .

[20]  Enrique Zuazua,et al.  Boundary controllability of the finite-difference space semi-discretizations of the beam equation , 2002 .

[21]  Vilmos Komornik,et al.  Ingham Type Theorems and Applications to Control Theory , 1999 .

[22]  Enrique Zuazua,et al.  Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .

[23]  Enrique Zuazua,et al.  Discrete Ingham inequalities and applications , 2004 .

[24]  R. Glowinski,et al.  A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .

[25]  Helly Fourier transforms in the complex domain , 1936 .

[26]  Généralisation d'un théorème de Beurling et application à la théorie du contrôle , 2000 .

[27]  C. Baiocchi,et al.  Ingham-Beurling type theorems with weakened gap conditions , 2002 .

[28]  Nonharmonic Fourier Series and the Stabilization of Distributed Semi-Linear Control Systems * , 2006 .