Discrete Ingham Inequalities and Applications
暂无分享,去创建一个
[1] L. Carleson,et al. The Collected Works of Arne Beurling , 1989 .
[3] V. Komornik. Exact Controllability and Stabilization: The Multiplier Method , 1995 .
[4] 김정기,et al. Propagation , 1994, Encyclopedia of Evolutionary Psychological Science.
[5] L. Trefethen. Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations , 1996 .
[6] Famille de schémas implicites uniformément contrôlables pour l'équation des ondes 1-D , 2004 .
[7] J. Bowles,et al. Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .
[8] Sergei Avdonin,et al. Ingham-type inequalities and Riesz bases of divided differences , 2001 .
[9] N. Wiener,et al. Fourier Transforms in the Complex Domain , 1934 .
[10] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[11] M. Slemrod,et al. Nonharmonic fourier series and the stabilization of distributed semi‐linear control systems , 1979 .
[12] D. L. Russell. Review: J.-L. Lions, Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués , 1990 .
[13] Carlos Castro,et al. Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method , 2006, Numerische Mathematik.
[14] Enrique Zuazua,et al. On a theorem of Ingham , 1997 .
[15] Enrique Zuazua,et al. Uniform boundary controllability of a discrete 1-D wave equation , 2003, Syst. Control. Lett..
[16] L. Trefethen. Group velocity in finite difference schemes , 1981 .
[17] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[18] E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .
[19] Enrique Zuazua,et al. SINGULAR INTERNAL STABILIZATION OF THE WAVE EQUATION , 1998 .
[20] Enrique Zuazua,et al. Boundary controllability of the finite-difference space semi-discretizations of the beam equation , 2002 .
[21] Vilmos Komornik,et al. Ingham Type Theorems and Applications to Control Theory , 1999 .
[22] Enrique Zuazua,et al. Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .
[23] Enrique Zuazua,et al. Discrete Ingham inequalities and applications , 2004 .
[24] R. Glowinski,et al. A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods , 1990 .
[25] Helly. Fourier transforms in the complex domain , 1936 .
[26] Généralisation d'un théorème de Beurling et application à la théorie du contrôle , 2000 .
[27] C. Baiocchi,et al. Ingham-Beurling type theorems with weakened gap conditions , 2002 .
[28] Nonharmonic Fourier Series and the Stabilization of Distributed Semi-Linear Control Systems * , 2006 .