Can isolated single black holes produce X-ray novae?

Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionizaiton disk instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. Possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

[1]  J. Wheeler,et al.  Thermal instability accretion disk model for the X-ray transient A0620-00 , 1989 .

[2]  Thermal equilibria of accretion disks , 1994, astro-ph/9409018.

[3]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[4]  Hans Ritter,et al.  The light curves of soft X‐ray transients , 1988 .

[5]  I. Mirabel,et al.  Formation of a Black Hole in the Dark , 2003, Science.

[6]  J. Lasota,et al.  The viscosity parameter α and the properties of accretion disc outbursts in close binaries , 2012, 1209.0017.

[7]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[8]  J. Greiner,et al.  INVESTIGATING THE NATURE OF IGR J17454–2919 USING X-RAY AND NEAR-INFRARED OBSERVATIONS , 2015, 1506.01205.

[9]  J. Bally,et al.  Is the Galactic Centre gamma-ray source 1E1740.7 – 2942 accreting from a molecular cloud? , 1991, Nature.

[10]  E.P.J. van den Heuvel,et al.  UvA-DARE ( Digital Academic Repository ) A catalogue of low-mass X-ray binaries , 2022 .

[11]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[12]  R. Hōshi Accretion Model for Outbursts of Dwarf Nova , 1979 .

[13]  F. Bauer,et al.  BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.

[14]  E. Rosolowsky,et al.  The Mass Spectra of Giant Molecular Clouds in the Local Group , 2005, astro-ph/0508679.

[15]  Roger D. Blandford,et al.  On the fate of gas accreting at a low rate on to a black hole , 1998, astro-ph/9809083.

[16]  G. Dubus,et al.  Revisiting a fundamental test of the disc instability model for X‐ray binaries , 2012, 1205.5038.

[17]  Jonathan P. Williams,et al.  The Galactic Distribution of OB Associations in Molecular Clouds , 1997 .

[18]  F. Hoyle,et al.  On the Mechanism of Accretion by Stars , 1944 .

[19]  J. Wheeler,et al.  Disk-instability model for soft-X-ray transients containing black holes , 1989 .

[20]  R. Svensson Electron-Positron Pair Equilibria in Relativistic Plasmas , 1982 .

[21]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .

[22]  S. Popov,et al.  Jets and gamma-ray emission from isolated accreting black holes , 2012, 1209.0293.

[23]  P. Armitage,et al.  The Blandford-Znajek Mechanism and the Emission from Isolated Accreting Black Holes , 1999, astro-ph/9907298.

[24]  R. Mignani,et al.  A closer look at the X‐ray transient XTE J1908+094: identification of two new near‐infrared candidate counterparts , 2005, astro-ph/0511560.

[25]  M. Davies,et al.  Investigating stellar‐mass black hole kicks , 2012, 1203.3077.

[26]  R. Blandford,et al.  Two‐dimensional adiabatic flows on to a black hole – I. Fluid accretion , 2003, astro-ph/0306184.

[27]  P. A. Charles,et al.  X-ray irradiation in low-mass binary systems , 1999 .

[28]  N. E. White,et al.  The Galactic Distribution of Black Hole Candidates in Low-Mass X-Ray Binary Systems , 1996 .

[29]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – I. A technique to determine the integral surface mass density of the disc near the Sun , 1989 .

[30]  J. Miller-Jones Astrometric Observations of X-ray Binaries Using Very Long Baseline Interferometry , 2014, Publications of the Astronomical Society of Australia.

[31]  Zhen Yan,et al.  X-RAY OUTBURSTS OF LOW-MASS X-RAY BINARY TRANSIENTS OBSERVED IN THE RXTE ERA , 2014, 1408.5146.

[32]  F. Hoyle,et al.  The effect of interstellar matter on climatic variation , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[33]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[34]  M. Reid,et al.  THE TRIGONOMETRIC PARALLAX OF CYGNUS X-1 , 2011, 1106.3688.

[35]  Ramesh Narayan,et al.  Advection-dominated Accretion: A Self-similar Solution , 1994 .

[36]  M. Gilfanov,et al.  Is 1E 1740.7–2942 Inside the Dense Molecular Cloud? Constraints from ASCA Data , 1996 .

[37]  Xuebing Wang,et al.  WISE DETECTION OF THE GALACTIC LOW-MASS X-RAY BINARIES , 2014, 1404.3472.

[38]  John W. Armstrong,et al.  Electron Density Power Spectrum in the Local Interstellar Medium , 1995 .

[39]  Bonn,et al.  MAMBO Mapping Of Spitzer c2d Small Clouds And Cores , 2008, 0805.4205.

[40]  K. Ioka,et al.  GW 150914-like black holes as Galactic high-energy sources , 2016, 1612.03913.

[41]  M. Miville-Deschênes,et al.  PHYSICAL PROPERTIES OF MOLECULAR CLOUDS FOR THE ENTIRE MILKY WAY DISK , 2016, 1610.05918.

[42]  Yasuo Tanaka,et al.  X-ray novae , 1996 .

[43]  M. Schultheis,et al.  When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy , 2016, 1601.03042.

[44]  T. Nakamura,et al.  Emission from Isolated Black Holes and MACHOs Accreting from the Interstellar Medium , 1997, astro-ph/9712284.

[45]  Mario Livio,et al.  The Properties of X-Ray and Optical Light Curves of X-Ray Novae , 1997 .

[46]  O. Blaes,et al.  Dwarf nova outbursts with magnetorotational turbulence , 2016, 1608.01321.

[47]  J. Lasota The disc instability model of dwarf novae and low-mass X-ray binary transients , 2001, astro-ph/0102072.

[48]  B. Wandelt,et al.  MAGNETIC FIELDS IN INTERSTELLAR CLOUDS FROM ZEEMAN OBSERVATIONS: INFERENCE OF TOTAL FIELD STRENGTHS BY BAYESIAN ANALYSIS , 2010 .

[49]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[50]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[51]  J. Cannizzo,et al.  The vertical structure and stability of alpha model accretion disks. , 1984 .

[52]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[53]  M. Kamionkowski,et al.  X-rays from isolated black holes in the Milky Way , 2001, astro-ph/0109539.

[54]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[55]  M. Lehnert,et al.  THE DOMINANT EPOCH OF STAR FORMATION IN THE MILKY WAY FORMED THE THICK DISK , 2014, 1401.1835.

[56]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[57]  S. Shapiro,et al.  Black holes in X-ray binaries: Marginal existence and rotation reversals of accretion disks , 1976 .

[58]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[59]  A. R. Rivolo,et al.  Mass, luminosity, and line width relations of Galactic molecular clouds , 1987 .

[60]  S. Mineshige,et al.  Black-Hole Accretion Disks: Towards a New Paradigm , 2008 .

[61]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun , 1989 .

[62]  J. van Paradijs,et al.  On the Accretion Instability in Soft X-Ray Transients , 1996 .

[63]  Chris L. Fryer,et al.  ON THE MAXIMUM MASS OF STELLAR BLACK HOLES , 2009, 0904.2784.

[64]  E. L. Robinson,et al.  NEAR-INFRARED SPECTROSCOPY OF LOW-MASS X-RAY BINARIES: ACCRETION DISK CONTAMINATION AND COMPACT OBJECT MASS DETERMINATION IN V404 Cyg AND Cen X-4 , 2010, 1004.5358.

[65]  T. Maccarone,et al.  The closest black holes , 2013, 1301.1341.

[66]  Aya Kubota,et al.  Modelling the behaviour of accretion flows in X-ray binaries , 2007, 0708.0148.

[67]  R. Narayan,et al.  NUMERICAL SIMULATION OF HOT ACCRETION FLOWS. III. REVISITING WIND PROPERTIES USING THE TRAJECTORY APPROACH , 2015, 1501.01197.

[68]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.