An estimation model of value-at-risk portfolio under uncertainty

A value-at-risk portfolio model under uncertainty is discussed. In the proposed model, randomness and fuzziness are evaluated, respectively, by the probabilistic expectation and the mean values with evaluation weights and @l-mean functions. The means, the variances and the measurements of imprecision for fuzzy numbers/fuzzy random variables are evaluated in the possibility case and the necessity case, and the rate of return in portfolio is estimated regarding the both random factors and imprecise factors. By analytical approach, we derive a solution of the value-at-risk portfolio problem. A numerical example is given to illustrate our idea.

[1]  Liangjian Hu,et al.  The variance and covariance of fuzzy random variables and their applications , 2001, Fuzzy Sets Syst..

[2]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..

[3]  Masami Yasuda,et al.  A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty , 2006, Fuzzy Sets Syst..

[4]  S. Pliska Introduction to Mathematical Finance: Discrete Time Models , 1997 .

[5]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[6]  Yuji Yoshida A Mean Estimation of Fuzzy Numbers by Evaluation Measures , 2004, KES.

[7]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[8]  Y. Yoshida "Mean Values, Measurement of Fuzziness and Variance of Fuzzy Random Variables for Fuzzy Optimization" , 2006 .

[9]  Didier Dubois,et al.  Gradual elements in a fuzzy set , 2008, Soft Comput..

[10]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[11]  D. Dubois,et al.  On various definitions of the variance of a fuzzy random variable , 2007 .

[12]  Zdenek Zmeskal,et al.  Value at risk methodology under soft conditions approach (fuzzy-stochastic approach) , 2005, Eur. J. Oper. Res..

[13]  M. Amparo Vila,et al.  On a canonical representation of fuzzy numbers , 1998, Fuzzy Sets Syst..

[14]  Didier Dubois,et al.  The Empirical Variance of a Set of Fuzzy Intervals , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[15]  Yuji Yoshida,et al.  The valuation of European options in uncertain environment , 2003, Eur. J. Oper. Res..

[16]  Antonio González A study of the ranking function approach through mean values , 1990 .

[17]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[18]  W. Sharpe,et al.  Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .

[19]  Zdenek Zmeskal,et al.  Application of the Fuzzy - Stochastic Methodology to Appraising the Firm Value as a European Call Option , 2001, Eur. J. Oper. Res..

[20]  A. Whitehead An Introduction to Mathematics , 1949, Nature.

[21]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[22]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[23]  Masami Yasuda,et al.  A Discrete-Time Portfolio Selection with Uncertainty of Stock Prices , 2003, IFSA.

[24]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[25]  Yuji Yoshida,et al.  A discrete-time model of American put option in an uncertain environment , 2003, Eur. J. Oper. Res..

[26]  Masahiro Inuiguchi,et al.  Portfolio selection under independent possibilistic information , 2000, Fuzzy Sets Syst..

[27]  Marc C. Steinbach,et al.  Markowitz Revisited: Mean-Variance Models in Financial Portfolio Analysis , 2001, SIAM Rev..

[28]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[29]  M. Amparo Vila,et al.  A fuzziness measure for fuzzy numbers: Applications , 1998, Fuzzy Sets Syst..

[30]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[31]  Antonio González Muñoz,et al.  Further contributions to the study of the average value for ranking fuzzy numbers , 1994, Int. J. Approx. Reason..

[32]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[33]  R. Yager On the specificity of a possibility distribution , 1992 .

[34]  A. Meucci Risk and asset allocation , 2005 .

[35]  María Angeles Gil,et al.  The λ-average value and the fuzzy expectation of a fuzzy random variable , 1998, Fuzzy Sets Syst..

[36]  L. M. D. C. Ibáñez,et al.  A subjective approach for ranking fuzzy numbers , 1989 .