Sensitivity-kernel-based tomographic migration velocity analysis using reverse time migration angle-image gathers

ABSTRACTSensitivity-kernel-based tomographic migration velocity analysis (TMVA) provides a means to better update the migration velocity model in complex media. For actual seismic data with finite-frequency bandwidth, migration velocity updated from wave-equation-based tomography is more suitable and robust than ray-based tomography for images obtained from reverse time migration (RTM). Depth residuals in the RTM-extracted angle-image gathers offer a reliable source of velocity information. We have developed cost-effective means of calculating the angle-domain sensitivity kernel and incorporated it into the TMVA approach using RTM angle-image gathers. The angle-domain sensitivity kernels are used to convert the depth residuals from RTM angle-image gathers into velocity perturbations, which were then used to refine the velocity model. We derived an approximate analytical residual moveout function for measuring depth residuals of the RTM angle-image gather in isotropic media and also devised a workflow for ...

[1]  D. Smeulders,et al.  Validation of first-order diffraction theory for the traveltimes and amplitudes of propagating waves , 2006 .

[2]  Marta Woodward,et al.  Wave-equation tomography , 1992 .

[3]  Christof Stork,et al.  Linear aspects of tomographic velocity analysis , 1991 .

[4]  T. Alkhalifah,et al.  Traveltime sensitivity kernels for wave equation tomography using the unwrapped phase , 2014 .

[5]  Paul Sava,et al.  Offset and angle-domain common image-point gathers for shot-profile migration , 2002 .

[6]  N. Bleistein,et al.  Velocity Analysis By Residual Moveout , 1992 .

[7]  Arben Pitarka,et al.  3D Elastic Finite-Difference Modeling of Seismic Motion Using Staggered Grids with Nonuniform Spacing , 1999 .

[8]  Junru Jiao Residual migration velocity analysis in the plane wave domain : theory and applications , 2001 .

[9]  Xiao‐Bi Xie,et al.  Angle-domain sensitivity kernels for migration velocity analysis: comparison between theoretically derived and directly measured , 2009 .

[10]  Paul Sava,et al.  Angle-domain common-image gathers by wavefield continuation methods , 2003 .

[11]  J. Claerbout,et al.  Incorporating geologic information into reflection tomography , 2004 .

[12]  Ru-Shan Wu,et al.  Extracting Angle Domain Information From Migrated Wavefield , 2002 .

[13]  Xiao‐Bi Xie,et al.  Velocity analysis for plane-wave source migration using the finite-frequency sensitivity kernel , 2009 .

[14]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[15]  M. Taner,et al.  SEMBLANCE AND OTHER COHERENCY MEASURES FOR MULTICHANNEL DATA , 1971 .

[16]  Paul Farmer,et al.  Automated 3D Tomographic Velocity Analysis of Residual Moveout In Prestack Depth Migrated Common Image Point Gathers. , 1998 .

[17]  N. Bleistein,et al.  3-D Analytical Migration Velocity Analysis I: Two-step Velocity Estimation By Reflector-normal Update , 1999 .

[18]  Christof Stork,et al.  REFLECTION TOMOGRAPHY IN THE POSTMIGRATED DOMAIN , 1992 .

[19]  Xiao‐Bi Xie,et al.  A Wave-equation Migration Velocity Analysis Approach Based On the Finite-frequency Sensitivity Kernel , 2008 .

[20]  C. Mosher,et al.  Migration Velocity Analysis Using Common Angle Image Gathers , 2001 .

[21]  Don Pham,et al.  Tomographic residual curvature analysis: The process and its components , 2003 .

[22]  Kamal M. Al-Yahya,et al.  Velocity analysis by iterative profile migration , 1987 .

[23]  Sergey Fomel,et al.  Applications of plane-wave destruction filters , 2002 .

[24]  P. Bakker,et al.  Wave-equation-based Residual Moveout Inversion In the Subsurface Angle Domain For Sub Salt Velocity Model Building , 2011 .

[25]  Sheng Xu,et al.  Common‐angle migration: A strategy for imaging complex media , 2001 .

[26]  Tariq Alkhalifah,et al.  Tau migration and velocity analysis: Theory and synthetic examples , 2003 .

[27]  R. Snieder,et al.  The Fresnel volume and transmitted waves , 2004 .

[28]  Michael A. Saunders,et al.  Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems , 1982, TOMS.

[30]  Dave Nichols,et al.  A decade of tomography , 2008 .

[31]  John Toldi,et al.  Velocity analysis without picking , 1989 .

[32]  Hui Yang,et al.  The finite-frequency sensitivity kernel for migration residual moveout and its applications in migration velocity analysis , 2008 .

[33]  J. Etgen,et al.  An overview of depth imaging in exploration geophysics , 2009 .

[34]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[35]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[36]  Tariq Alkhalifah,et al.  Wavefield extrapolation in pseudodepth domain , 2013 .

[37]  Sergey Fomel Theory of 3-D angle gathers in wave-equation seismic imaging , 2011 .

[38]  Zhenyue Liu,et al.  An analytical approach to migration velocity analysis , 1997 .

[39]  W. Symes,et al.  Angle‐domain common‐image gathers for migration velocity analysis by wavefield‐continuation imaging , 2004 .

[41]  Biondo Biondi,et al.  3D angle‐domain common‐image gathers for migration velocity analysis , 2004 .

[42]  Shengwen Jin,et al.  Residual migration-velocity analysis using common angle image gathers , 2006 .

[43]  Shengwen Jin,et al.  Tomographic Migration-velocity Analysis Using Common Angle Image Gathers , 2008 .

[44]  C. H. Dix SEISMIC VELOCITIES FROM SURFACE MEASUREMENTS , 1955 .

[45]  D. Verschuur,et al.  A constrained parametric inversion for velocity analysis based on CFP technology , 2000 .

[46]  S. Deregowski,et al.  Common-offset migrations and velocity analysis , 1990 .

[47]  Robert Soubaras Angle gathers for shot-record migration by local harmonic decomposition in 73rd Ann , 2003 .

[48]  John Sherwood,et al.  Velocity and interface depth determination by tomography of depth migrated gathers , 1996 .