Rings of Invariants and p-Sylow Subgroups

Abstract Let V be a vector space of dimension n over a field k of characteristic p. Let G ⊆ Gl(V) be a finite group with p-Sylow subgroup P. G and P act on the symmetric algebra R of V. Denote the respective rings of invariants by RG and Rp. We show that if Rp is Cohen-Macaulay (CM) so also is RG, generalizing a result of M. Hochster and J. A. Eagon. If P is normal in G and G is generated by P and pseudo-reflections, we show that if RG is CM so also is Rp. However, in general, RG may even be polynomial with Rp not CM. Finally, we give a procedure for determining a set of generators for RG given a set of generators for Rp.