Numerical investigation of soliton molecules with variable separation in passively mode-locked fiber lasers

Abstract Soliton molecules evolution is numerically investigated in a passively mode-locked fiber laser based on the nonlinear polarization rotation (NPR) technique. Peak-to-peak separation of soliton molecules can be controlled by changing either pump strength or cavity linear phase delay appropriately. Moreover, soliton molecules with intensity-independent evolution, separation-independent evolution and large intensity-vibrating evolution are numerically found, respectively. The characteristics of soliton molecules evolution versus linear phase delay or pump strength are given. Periodic stable evolution regimes are found. The separation-controllable soliton molecules can be attributed to the mutual effects of phase delay, Kerr nonlinearity and other parameters of the cavity.

[1]  H. Tam,et al.  Observation of bound states of solitons in a passively mode-locked fiber laser , 2001 .

[2]  F. Mitschke,et al.  Experimental observation of temporal soliton molecules. , 2005, Physical review letters.

[3]  Sergei Popov,et al.  Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm. , 2003, Optics express.

[4]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[5]  F. Lederer,et al.  Multi-soliton complexes in mode-locked fiber lasers , 2011 .

[6]  S. Yamashita,et al.  Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. , 2004, Optics letters.

[7]  Aleksei M. Zheltikov,et al.  Mode-locked Yb-doped large-mode-area photonic crystal fiber laser operating in the vicinity of zero cavity dispersion , 2010 .

[8]  Swee Chuan Tjin,et al.  Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion , 2010, 1003.5096.

[9]  D. Meyerhofer,et al.  Soliton collisions in optical birefringent fibers , 1994 .

[10]  C. Lu,et al.  Bound soliton fiber laser , 2002, 0910.5806.

[11]  P. Grelu,et al.  Dissipative Soliton Interactions Inside a Fiber Laser Cavity , 2005 .

[12]  Jens Limpert,et al.  Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser. , 2010, Optics letters.

[13]  Boris A. Malomed,et al.  STABILITY OF BOUND STATES OF PULSES IN THE GINZBURG-LANDAU EQUATIONS , 1997 .

[14]  Dissipation-managed soliton in a quasi-one-dimensional Bose-Einstein condensate , 2006, cond-mat/0607060.

[15]  P. Grelu,et al.  Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime. , 2003, Optics express.

[16]  J W Nicholson,et al.  A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber. , 2007, Optics express.

[17]  Hwa-Yaw Tam,et al.  Soliton interaction in a fiber ring laser , 2005 .

[18]  Simon Fleming,et al.  High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control. , 2006, Optics express.

[19]  P. Grelu,et al.  Vibrating soliton pairs in a mode-locked laser cavity. , 2006, Optics letters.

[20]  Adrian Ankiewicz,et al.  Multisoliton Solutions of the Complex Ginzburg-Landau Equation , 1997 .

[21]  D. Tang,et al.  Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers , 2005, 0910.5810.

[22]  F. Lederer,et al.  Discrete Family of Dissipative Soliton Pairs in Mode-Locked Fiber Lasers , 2009, 0906.1589.

[23]  Dingyuan Tang,et al.  Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker , 2009 .