An Overview of Phase I Analysis for Process Improvement and Monitoring

We provide an overview and perspective on the Phase I collection and analysis of data for use in process improvement and control charting. In Phase I, the focus is on understanding the process variability, assessing the stability of the process, investigating process-improvement ideas, selecting an appropriate in-control model, and providing estimates of the in-control model parameters. In our article, we review and synthesize many of the important developments that pertain to the analysis of process data in Phase I. We give our view of the major issues and developments in Phase I analysis. We identify the current best practices and some opportunities for future research in this area.

[1]  Ronald J. M. M. Does,et al.  A Robust Standard Deviation Control Chart , 2012, Technometrics.

[2]  W. A. Shewhart,et al.  Statistical method from the viewpoint of quality control , 1939 .

[3]  William H. Woodall,et al.  Phase I Analysis of Linear Profiles With Calibration Applications , 2004, Technometrics.

[4]  William H. Woodall,et al.  The effect of autocorrelation on the retrospective X-chart , 1992 .

[5]  Victoria S. Jordan,et al.  Distribution-Free Phase I Control Charts for Subgroup Location , 2009 .

[6]  William H. Woodall,et al.  A Review and perspective on surveillance of Bernoulli processes , 2011, Qual. Reliab. Eng. Int..

[7]  Hang Zhang,et al.  Determining Statistical Process Control Baseline Periods in Long Historical Data Streams , 2010 .

[8]  William H. Woodall,et al.  The Difficulty in Designing Shewhart X̄ and X Control Charts with Estimated Parameters , 2015 .

[9]  Joe H. Sullivan,et al.  A Self-Starting Control Chart for Multivariate Individual Observations , 2002, Technometrics.

[10]  Joseph J. Pignatiello,et al.  On Constructing Retrospective ―X Control Chart Limits , 2005 .

[11]  Abdel-Salam G. Abdel-Salam,et al.  A Semiparametric Mixed Model Approach to Phase I Profile Monitoring , 2013, Qual. Reliab. Eng. Int..

[12]  Rocco J. Perla,et al.  Sampling Considerations for Health Care Improvement , 2013, Quality management in health care.

[13]  Michael Pokojovy,et al.  A Multistep, Cluster-Based Multivariate Chart for Retrospective Monitoring of Individuals , 2009 .

[14]  Frederick S. Hillier,et al.  X-Bar- and R-Chart Control Limits Based on A Small Number of Subgroups , 1969 .

[15]  Steven E. Rigdon,et al.  A Bayesian Approach to Change Point Estimation in Multivariate SPC , 2012 .

[16]  Douglas M. Hawkins,et al.  Self-Starting Multivariate Exponentially Weighted Moving Average Control Charting , 2007, Technometrics.

[17]  Nola D. Tracy,et al.  Multivariate Control Charts for Individual Observations , 1992 .

[18]  Donald J. Wheeler,et al.  Understanding Statistical Process Control , 1986 .

[19]  William H. Woodall Statistical Engineering: An Algorithm for Reducing Variation in Manufacturing Processes , 2005 .

[20]  J. Pignatiello,et al.  On constructing T 2 control charts for retrospective examination , 2000 .

[21]  Frederick S. Hillier,et al.  Mean and Variance Control Chart Limits Based on a Small Number of Subgroups , 1970 .

[22]  Mahmoud A. Mahmoud,et al.  A change point method for linear profile data , 2007, Qual. Reliab. Eng. Int..

[23]  Charles W. Champ,et al.  Designing Phase I ―X Charts with Small Sample Sizes , 2004 .

[24]  Fadel M. Megahed,et al.  Geometric Charts with Estimated Control Limits , 2013, Qual. Reliab. Eng. Int..

[25]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[26]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[27]  Eugenio K. Epprecht,et al.  Estimating the Standard Deviation in Quality-Control Applications , 2010 .

[28]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring: Noorossana/Profile Monitoring , 2011 .

[29]  Joe H. Sullivan,et al.  Estimating the Locations of Multiple Change Points in the Mean , 2002, Comput. Stat..

[30]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[31]  William H. Woodall,et al.  Statistical monitoring of nonlinear product and process quality profiles , 2007, Qual. Reliab. Eng. Int..

[32]  William H. Woodall,et al.  Introduction to Statistical Quality Control, Fifth Edition , 2005 .

[33]  Charles W. Champ,et al.  Phase I control charts for times between events , 2002 .

[34]  Nedret Billor,et al.  A Distribution-Free Multivariate Phase I Location Control Chart for Subgrouped Data from Elliptical Distributions , 2014, Technometrics.

[35]  Subha Chakraborti,et al.  Shewhart-type control charts for variation in phase I data analysis , 2010, Comput. Stat. Data Anal..

[36]  Tongdan Jin,et al.  An improved self-starting cumulative count of conforming chart for monitoring high-quality processes under group inspection , 2012 .

[37]  Wilbert C.M. Kallenberg,et al.  Are estimated control charts in control? , 2001 .

[38]  Chunguang Zhou,et al.  A Self-Starting Control Chart for Linear Profiles , 2007 .

[39]  Rassoul Noorossana,et al.  Statistical Analysis of Profile Monitoring , 2011 .

[40]  Yajuan Chen,et al.  Cluster_Based Profile Monitoring in Phase I Analysis , 2014 .

[41]  N. José Alberto Vargas,et al.  Robust Estimation in Multivariate Control Charts for Individual Observations , 2003 .

[42]  Charles W. Champ,et al.  A Distribution-Free Phase I Control Chart for Subgroup Scale , 2010 .

[43]  José-Luis Alfaro-Navarro,et al.  A robust alternative to Hotelling's T2 control chart using trimmed estimators , 2008, Qual. Reliab. Eng. Int..

[44]  Connie M. Borror,et al.  Paving the Way: Seven data collection strategies to enhance your quality analyses , 2014 .

[45]  Douglas C. Montgomery,et al.  Some Current Directions in the Theory and Application of Statistical Process Monitoring , 2014 .

[46]  G. Geoffrey Vining Technical Advice: Scientific Method and Approaches for Collecting Data , 2013 .

[47]  W. Shewhart The Economic Control of Quality of Manufactured Product. , 1932 .

[48]  William H. Woodall,et al.  A Control Chart for Preliminary Analysis of Individual Observations , 1996 .

[49]  Arjun K. Gupta,et al.  Parametric Statistical Change Point Analysis , 2000 .

[50]  Jyh-Jen Horng Shiau,et al.  A new strategy for Phase I analysis in SPC , 2010, Qual. Reliab. Eng. Int..

[51]  S. Panchapakesan,et al.  Inference about the Change-Point in a Sequence of Random Variables: A Selection Approach , 1988 .

[52]  Charles W. Champ,et al.  Comparison of standard and individual limits Phase I Shewhart $\overline{X}$, $R$, and $S$ charts , 2003 .

[53]  Yu Ding,et al.  Phase I Analysis for Monitoring Nonlinear Profiles in Manufacturing Processes , 2006 .

[54]  Charles W. Champ,et al.  A Comparison of Two Phase One Control Charts , 1995 .

[55]  M. A. Graham,et al.  Phase I Statistical Process Control Charts: An Overview and Some Results , 2008 .

[56]  Zhonghua Li,et al.  Self-starting control chart for simultaneously monitoring process mean and variance , 2010 .

[57]  Gerald J. Hahn,et al.  Getting the Right Data Up Front: A Key Challenge , 2012 .

[58]  Lloyd S. Nelson,et al.  Control Charts: Rational Subgroups and Effective Applications , 1988 .

[59]  Douglas C. Montgomery,et al.  A review of statistical process control techniques for short run manufacturing systems , 1996 .

[60]  David V. Hinkley,et al.  Inference about the change-point in a sequence of binomial variables , 1970 .

[61]  Donald J. Wheeler,et al.  Individual Contributions for A Discussion on Statistically-Based process Monitoring and Control , 1997 .

[62]  William H. Woodall,et al.  Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations , 2000 .

[63]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[64]  M. A. Graham,et al.  A Phase I nonparametric Shewhart-type control chart based on the median , 2010 .

[65]  D. Hinkley Inference about the change-point from cumulative sum tests , 1971 .

[66]  Arthur B. Yeh,et al.  Phase I Risk-Adjusted Control Charts for Monitoring Surgical Performance by Considering Categorical Covariates , 2012 .

[67]  Richard D. Shainin Multi‐Vari Charts , 2008 .

[68]  Changliang Zou,et al.  Nonparametric maximum likelihood approach to multiple change-point problems , 2014, 1405.7173.

[69]  Muhammad Riaz,et al.  Robust Location Estimators for the Ū Control Chart , 2011 .

[70]  Benjamin T. Hazen,et al.  Applying Control Chart Methods to Enhance Data Quality , 2014, Technometrics.

[71]  Changliang Zou,et al.  Nonparametric control chart based on change-point model , 2009 .

[72]  William H. Woodall,et al.  High breakdown estimation methods for Phase I multivariate control charts , 2007, Qual. Reliab. Eng. Int..

[73]  Douglas C. Montgomery,et al.  Using Control Charts to Monitor Process and Product Quality Profiles , 2004 .

[74]  Giovanna Capizzi,et al.  Self-Starting CUSCORE Control Charts for Individual Multivariate Observations , 2010 .

[75]  Subha Chakraborti,et al.  Boxplot‐based phase I control charts for time between events , 2012, Qual. Reliab. Eng. Int..

[76]  Leonard A. Seder DIAGNOSIS WITH DIAGRAMS , 1990 .

[77]  D. Hawkins Self‐Starting Cusum Charts for Location and Scale , 1987 .

[78]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Univariate Data , 2013 .

[79]  Connie M. Borror,et al.  Phase I control charts for independent Bernoulli data , 2001 .

[80]  G. M. Oyeyemi,et al.  A robust method of estimating covariance matrix in multivariate data analysis , 2009 .

[81]  William H. Woodall,et al.  Statistical process control with several components of common cause variability , 1995 .

[82]  Douglas M. Hawkins,et al.  Self-Starting Multivariate Control Charts for Location and Scale , 2011 .

[83]  George E. P. Box,et al.  Statistical Control: By Monitoring and Feedback Adjustment , 1997 .

[84]  Charles P. Quesenberry,et al.  DPV Q charts for start-up processes and short or long runs , 1991 .

[85]  Douglas M. Hawkins,et al.  A Nonparametric Change-Point Control Chart , 2010 .