Artificial gravity and abort scenarios via tethers for human missions to mars

Minimum-mass tether designs are developed for a spinning human transport that not only provides artificial gravity, but also the potential for free-return aborts. The investigation reveals that severing the tether can provide a propellant-free boost to return astronauts to Earth in the event of an aborted landing on Mars. Earth-Mars-Earth, Earth-Mars-Venus-Earth, and Earth-Venus-Mars-Earth trajectories requiring little, or no, velocity change after departure from Earth, are examined. The investigation covers trajectories with launch opportunities between 2014 and 2030, launch hyperbolic excess speeds of up to 4.5 km/s and total flight times of less than 1000 days. We identify propellant-free abort scenarios in every Earth-Mars synodic period (2.14 years) with mission configurations that closely match NASA's design reference mission.

[1]  Dennis V. Byrnes,et al.  EVOLUTIONARY SPACE TRANSPORTATION PLAN FOR MARS CYCLING CONCEPTS , 2001 .

[2]  Mark J. Lewis,et al.  Hypersonic Airplane Space Tether Orbital Launch (HASTOL) system - Interim study results , 1999 .

[3]  Alan L. Friedlander,et al.  Transportation mode performance comparison for a sustained manned Mars base , 1986 .

[4]  Jordi Puig-Suari,et al.  A tether sling for lunar and interplanetary exploration , 1995 .

[5]  Aron A. Wolf Free return trajectories for Mars missions , 1991 .

[6]  Michelle M. Munk Departure Energies, Trip Times and Entry Speeds for Human Mars Missions , 1999 .

[7]  Alan L. Friedlander,et al.  Elements of a mars transportation system , 1987 .

[8]  L. E. George,et al.  Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities and Mars-to-Earth Return Opportunities 2009-2024 , 1998 .

[9]  L W Townsend,et al.  Critical need for a swingby return option for early manned Mars missions. , 1998, Journal of spacecraft and rockets.

[10]  James M. Longuski,et al.  Mars Free Return Trajectories , 1998 .

[11]  J. Longuski,et al.  Cycler orbit between Earth and Mars , 1993 .

[12]  James M. Longuski,et al.  Mars free returns via gravity assist from Venus , 2000 .

[13]  Michael D. Jokic,et al.  Design of a tether sling for human transportation systems between earth and mars , 2002 .

[14]  Brian Tillotson Tether as upper stage for launch to orbit , 1989 .

[15]  Sam Wilson,et al.  Fast round-trip Mars trajectories , 1990 .

[16]  Low energy trajectories to Mars via gravity assist from Venus to earth , 1991 .

[17]  Hans P. Moravec A non-synchronous orbital skyhook , 1977 .

[18]  James M. Longuski,et al.  Design of tether sling for human transportation systems between Earth and Mars , 2004 .

[19]  Robert L. Forward,et al.  Mars-Earth Rapid Interplanetary Tether Transport System: I. Initial Feasibility Analysis , 2001 .

[20]  Gerald D. Walberg,et al.  Mars Aerocapture Studies for the Design Reference Mission , 1997 .

[21]  Dennis V. Byrnes,et al.  Circulating transportation orbits between earth and Mars , 1986 .

[22]  Gerald Walberg,et al.  How shall we go to Mars? A review of mission scenarios , 1992 .

[23]  Carl G. Sauer MIDAS - Mission design and analysis software for the optimization of ballistic interplanetary trajectories , 1989 .

[24]  Dennis V. Byrnes,et al.  Analysis of a Class of Earth-Mars Cycler Trajectories , 2004 .

[25]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[26]  Stephen J. Hoffman,et al.  Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team , 1997 .

[27]  Robert P. Hoyt,et al.  Cislunar Tether Transport System , 1999 .

[28]  James M. Longuski,et al.  A LOW-THRUST VERSION OF THE ALDRIN CYCLER , 2002 .

[29]  Bret G. Drake,et al.  Reference Mission Version 3.0 Addendum to the Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team. Addendum; 3.0 , 1998 .

[30]  R. L. Sohn Manned Mars trips using Venus flyby modes. , 1966 .