Around probabilistic cellular automata

We survey probabilistic cellular automata with approaches coming from combinatorics, statistical physics, and theoretical computer science, each bringing a different viewpoint. Some of the questions studied are specific to a domain, and some others are shared, most notably the ergodicity problem.

[1]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[2]  Axel Bacher Average site perimeter of directed animals on the two-dimensional lattices , 2012, Discret. Math..

[3]  J. Propp,et al.  Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.

[4]  J. Marckert,et al.  Markovianity of the invariant distribution of probabilistic cellular automata on the line , 2014, 1401.5365.

[5]  A. Verhagen,et al.  An exactly soluble case of the triangular ising model in a magnetic field , 1976 .

[6]  Ana Busic,et al.  Density Classification on Infinite Lattices and Trees , 2011, LATIN.

[7]  Frank Kelly,et al.  ASYMPTOTIC STATIONARITY OF QUEUES IN SERIES AND THE HEAVY TRAFFIC APPROXIMATION , 1990 .

[8]  Péter Gács,et al.  A Simple Three-Dimensional Real-Time Reliable Cellular Array , 1988, J. Comput. Syst. Sci..

[9]  H. Rost,et al.  Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .

[10]  Lawrence Gray,et al.  A Reader's Guide to Gacs's “Positive Rates” Paper , 2001 .

[11]  Lawrence Gray,et al.  The Behavior of Processes with Statistical Mechanical Properties , 1987 .

[12]  Typeset By,et al.  Hydrodynamic Scaling, Convex Duality, and Asymptotic Shapes of Growth Models , 1996 .

[13]  Cheng-Shang Chang,et al.  On the input-output map of a G/G/1 queue , 1994, Journal of Applied Probability.

[14]  Jarkko Kari,et al.  Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..

[15]  Peter GBcsl Reliable Cellular Automata with Self-organization , 1997 .

[16]  H. Fuks Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  François Baccelli,et al.  Asymptotic results on infinite tandem queueing networks , 2000 .

[18]  Benjamin Hellouin de Menibus Asymptotic behaviour of cellular automata : computation and randomness , 2014 .

[19]  Piotr Berman,et al.  Investigations of fault-tolerant networks of computers , 1988, STOC '88.

[20]  Marcus Pivato Ergodic Theory of Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.

[21]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[22]  Nicolas Ollinger,et al.  Universalities in Cellular Automata , 2012, Handbook of Natural Computing.

[23]  Jean Mairesse,et al.  Probabilistic cellular automata and random fields with i.i.d. directions , 2012, ArXiv.

[24]  Alejandro Maass,et al.  Cesàro mean distribution of group automata starting from measures with summable decay , 2000, Ergodic Theory and Dynamical Systems.

[25]  Peter Gács A Toom rule that increases the thickness of sets , 1990 .

[26]  Alejandro Maass,et al.  Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules , 2003 .

[27]  Ilkka Törmä A uniquely ergodic cellular automaton , 2015, J. Comput. Syst. Sci..

[28]  G. Viennot,et al.  Problèmes combinatoires posés par la physique statistique , 1983 .

[29]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[30]  Deepak Dhar Exact Solution of a Directed-Site Animals-Enumeration Problem in three Dimensions. , 1983 .

[31]  Hans Daduna Queueing networks with discrete time scale: explicit expressions for the steady state behavior of discrete time stochastic networks , 2001 .

[32]  Nicolas Schabanel,et al.  Stochastic Cellular Automata: Correlations, Decidability and Simulations , 2013, Fundam. Informaticae.

[33]  Lise Ponselet,et al.  Phase transitions in probabilistic cellular automata , 2013, 1312.3612.

[34]  Jarkko Kari The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..

[35]  J. Kingman Subadditive Ergodic Theory , 1973 .

[36]  V. Malyshev,et al.  Invariant random boolean fields , 1969 .

[37]  Harry Kesten,et al.  Percolation Theory and Ergodic Theory of Infinite Particle Systems , 1987 .

[38]  Alberto Del Lungo,et al.  Directed animals, forests and permutations , 1999, Discret. Math..

[39]  T M Li Ge Te Interacting Particle Systems , 2013 .

[40]  Nazim Fatès,et al.  Stochastic Cellular Automata Solutions to the Density Classification Problem , 2012, Theory of Computing Systems.

[41]  Marcus Pivato,et al.  Limit measures for affine cellular automata II , 2001, Ergodic Theory and Dynamical Systems.

[42]  T. Liggett Interacting Particle Systems , 1985 .

[43]  Pierre Guillon,et al.  Nilpotency and Limit Sets of Cellular Automata , 2008, MFCS.

[44]  Jean-François Marckert,et al.  Directed Animals and Gas Models Revisited , 2007, Electron. J. Comb..

[45]  Mireille Bousquet-Mélou,et al.  New enumerative results on two-dimensional directed animals , 1998, Discret. Math..

[46]  Land,et al.  No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.

[47]  D. Dawson Synchronous and Asynchronous Reversible Markov Systems(1) , 1975, Canadian Mathematical Bulletin.

[48]  Alejandro Maass,et al.  On Cesàro Limit Distribution of a Class of Permutative Cellular Automata , 1998 .

[49]  Nagel,et al.  Discrete stochastic models for traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Béla Bollobás,et al.  Random majority percolation , 2010, Random Struct. Algorithms.

[51]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[52]  Matthew Cook,et al.  Universality in Elementary Cellular Automata , 2004, Complex Syst..

[53]  Jean-François Marckert,et al.  Directed Animals, Quadratic Systems and Rewriting Systems , 2012, Electron. J. Comb..

[54]  Kihong Park,et al.  Ergodicity and mixing rate of one-dimensional cellular automata , 1997 .

[55]  N. B. Vasilyev Bernoulli and Markov stationary measures in discrete local interactions , 1978 .

[56]  Pierre-Yves Louis,et al.  Stationary measures and phase transition for a class of probabilistic cellular automata , 2016, ArXiv.

[57]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[58]  Roelof Kuik,et al.  From PCA's to equilibrium systems and back , 1989 .

[59]  J. R. G. Mendonça Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  Jean Mairesse,et al.  A non-ergodic probabilistic cellular automaton with a unique invariant measure , 2010 .

[61]  Marcus Pivato,et al.  Limit measures for affine cellular automata , 2001, Ergodic Theory and Dynamical Systems.

[62]  M. Albenque A note on the enumeration of directed animals via gas considerations , 2008, 0805.1349.

[63]  A. Vershik Asymptotic Combinatorics and Algebraic Analysis , 1995 .

[64]  Paula Gonzaga Sá,et al.  The Gacs-Kurdyumov-Levin automaton revisited , 1992 .

[65]  Nazim Fatès Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision , 2011, STACS.

[66]  Irène Marcovici,et al.  . (Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliquesProbabilistic cellular automata and specific measures on symbolic spaces) , 2013 .

[67]  Ana Busic,et al.  Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2010, Advances in Applied Probability.

[68]  P. Burke,et al.  Behavior of Tandem Buffers with Geometric Input and Markovian Output , 1976, IEEE Trans. Commun..

[69]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[70]  L. Taggi Critical Probabilities and Convergence Time of Stavskaya's Probabilistic Cellular Automata , 2014 .

[71]  Hans Daduna,et al.  Queueing Networks with Discrete Time Scale , 2001, Lecture Notes in Computer Science.

[72]  Péter Gács,et al.  Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..

[73]  Jarkko Kari,et al.  Conservation Laws and Invariant Measures in Surjective Cellular Automata , 2011, Automata.

[74]  Ville Salo On Nilpotency and Asymptotic Nilpotency of Cellular Automata , 2012, AUTOMATA & JAC.

[75]  R. L. Dobrushin,et al.  Stochastic cellular systems : ergodicity, memory, morphogenesis , 1990 .

[76]  Nazim Fatès,et al.  Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.