Around probabilistic cellular automata
暂无分享,去创建一个
[1] D. Lind. Applications of ergodic theory and sofic systems to cellular automata , 1984 .
[2] Axel Bacher. Average site perimeter of directed animals on the two-dimensional lattices , 2012, Discret. Math..
[3] J. Propp,et al. Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.
[4] J. Marckert,et al. Markovianity of the invariant distribution of probabilistic cellular automata on the line , 2014, 1401.5365.
[5] A. Verhagen,et al. An exactly soluble case of the triangular ising model in a magnetic field , 1976 .
[6] Ana Busic,et al. Density Classification on Infinite Lattices and Trees , 2011, LATIN.
[7] Frank Kelly,et al. ASYMPTOTIC STATIONARITY OF QUEUES IN SERIES AND THE HEAVY TRAFFIC APPROXIMATION , 1990 .
[8] Péter Gács,et al. A Simple Three-Dimensional Real-Time Reliable Cellular Array , 1988, J. Comput. Syst. Sci..
[9] H. Rost,et al. Non-equilibrium behaviour of a many particle process: Density profile and local equilibria , 1981 .
[10] Lawrence Gray,et al. A Reader's Guide to Gacs's “Positive Rates” Paper , 2001 .
[11] Lawrence Gray,et al. The Behavior of Processes with Statistical Mechanical Properties , 1987 .
[12] Typeset By,et al. Hydrodynamic Scaling, Convex Duality, and Asymptotic Shapes of Growth Models , 1996 .
[13] Cheng-Shang Chang,et al. On the input-output map of a G/G/1 queue , 1994, Journal of Applied Probability.
[14] Jarkko Kari,et al. Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..
[15] Peter GBcsl. Reliable Cellular Automata with Self-organization , 1997 .
[16] H. Fuks. Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] François Baccelli,et al. Asymptotic results on infinite tandem queueing networks , 2000 .
[18] Benjamin Hellouin de Menibus. Asymptotic behaviour of cellular automata : computation and randomness , 2014 .
[19] Piotr Berman,et al. Investigations of fault-tolerant networks of computers , 1988, STOC '88.
[20] Marcus Pivato. Ergodic Theory of Cellular Automata , 2009, Encyclopedia of Complexity and Systems Science.
[21] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[22] Nicolas Ollinger,et al. Universalities in Cellular Automata , 2012, Handbook of Natural Computing.
[23] Jean Mairesse,et al. Probabilistic cellular automata and random fields with i.i.d. directions , 2012, ArXiv.
[24] Alejandro Maass,et al. Cesàro mean distribution of group automata starting from measures with summable decay , 2000, Ergodic Theory and Dynamical Systems.
[25] Peter Gács. A Toom rule that increases the thickness of sets , 1990 .
[26] Alejandro Maass,et al. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules , 2003 .
[27] Ilkka Törmä. A uniquely ergodic cellular automaton , 2015, J. Comput. Syst. Sci..
[28] G. Viennot,et al. Problèmes combinatoires posés par la physique statistique , 1983 .
[29] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[30] Deepak Dhar. Exact Solution of a Directed-Site Animals-Enumeration Problem in three Dimensions. , 1983 .
[31] Hans Daduna. Queueing networks with discrete time scale: explicit expressions for the steady state behavior of discrete time stochastic networks , 2001 .
[32] Nicolas Schabanel,et al. Stochastic Cellular Automata: Correlations, Decidability and Simulations , 2013, Fundam. Informaticae.
[33] Lise Ponselet,et al. Phase transitions in probabilistic cellular automata , 2013, 1312.3612.
[34] Jarkko Kari. The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..
[35] J. Kingman. Subadditive Ergodic Theory , 1973 .
[36] V. Malyshev,et al. Invariant random boolean fields , 1969 .
[37] Harry Kesten,et al. Percolation Theory and Ergodic Theory of Infinite Particle Systems , 1987 .
[38] Alberto Del Lungo,et al. Directed animals, forests and permutations , 1999, Discret. Math..
[39] T M Li Ge Te. Interacting Particle Systems , 2013 .
[40] Nazim Fatès,et al. Stochastic Cellular Automata Solutions to the Density Classification Problem , 2012, Theory of Computing Systems.
[41] Marcus Pivato,et al. Limit measures for affine cellular automata II , 2001, Ergodic Theory and Dynamical Systems.
[42] T. Liggett. Interacting Particle Systems , 1985 .
[43] Pierre Guillon,et al. Nilpotency and Limit Sets of Cellular Automata , 2008, MFCS.
[44] Jean-François Marckert,et al. Directed Animals and Gas Models Revisited , 2007, Electron. J. Comb..
[45] Mireille Bousquet-Mélou,et al. New enumerative results on two-dimensional directed animals , 1998, Discret. Math..
[46] Land,et al. No perfect two-state cellular automata for density classification exists. , 1995, Physical review letters.
[47] D. Dawson. Synchronous and Asynchronous Reversible Markov Systems(1) , 1975, Canadian Mathematical Bulletin.
[48] Alejandro Maass,et al. On Cesàro Limit Distribution of a Class of Permutative Cellular Automata , 1998 .
[49] Nagel,et al. Discrete stochastic models for traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[50] Béla Bollobás,et al. Random majority percolation , 2010, Random Struct. Algorithms.
[51] Hans-Otto Georgii,et al. Gibbs Measures and Phase Transitions , 1988 .
[52] Matthew Cook,et al. Universality in Elementary Cellular Automata , 2004, Complex Syst..
[53] Jean-François Marckert,et al. Directed Animals, Quadratic Systems and Rewriting Systems , 2012, Electron. J. Comb..
[54] Kihong Park,et al. Ergodicity and mixing rate of one-dimensional cellular automata , 1997 .
[55] N. B. Vasilyev. Bernoulli and Markov stationary measures in discrete local interactions , 1978 .
[56] Pierre-Yves Louis,et al. Stationary measures and phase transition for a class of probabilistic cellular automata , 2016, ArXiv.
[57] John Odentrantz,et al. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.
[58] Roelof Kuik,et al. From PCA's to equilibrium systems and back , 1989 .
[59] J. R. G. Mendonça. Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[60] Jean Mairesse,et al. A non-ergodic probabilistic cellular automaton with a unique invariant measure , 2010 .
[61] Marcus Pivato,et al. Limit measures for affine cellular automata , 2001, Ergodic Theory and Dynamical Systems.
[62] M. Albenque. A note on the enumeration of directed animals via gas considerations , 2008, 0805.1349.
[63] A. Vershik. Asymptotic Combinatorics and Algebraic Analysis , 1995 .
[64] Paula Gonzaga Sá,et al. The Gacs-Kurdyumov-Levin automaton revisited , 1992 .
[65] Nazim Fatès. Stochastic Cellular Automata Solve the Density Classification Problem with an Arbitrary Precision , 2011, STACS.
[66] Irène Marcovici,et al. . (Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliquesProbabilistic cellular automata and specific measures on symbolic spaces) , 2013 .
[67] Ana Busic,et al. Probabilistic Cellular Automata, Invariant Measures, and Perfect Sampling , 2010, Advances in Applied Probability.
[68] P. Burke,et al. Behavior of Tandem Buffers with Geometric Input and Markovian Output , 1976, IEEE Trans. Commun..
[69] J. Lebowitz,et al. Statistical mechanics of probabilistic cellular automata , 1990 .
[70] L. Taggi. Critical Probabilities and Convergence Time of Stavskaya's Probabilistic Cellular Automata , 2014 .
[71] Hans Daduna,et al. Queueing Networks with Discrete Time Scale , 2001, Lecture Notes in Computer Science.
[72] Péter Gács,et al. Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..
[73] Jarkko Kari,et al. Conservation Laws and Invariant Measures in Surjective Cellular Automata , 2011, Automata.
[74] Ville Salo. On Nilpotency and Asymptotic Nilpotency of Cellular Automata , 2012, AUTOMATA & JAC.
[75] R. L. Dobrushin,et al. Stochastic cellular systems : ergodicity, memory, morphogenesis , 1990 .
[76] Nazim Fatès,et al. Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2006, LATIN.