Hybrid density functional theory study of vanadium doping in stoichiometric and congruent LiNbO3

[1]  W. Schmidt,et al.  Defect complexes in congruentLiNbO3and their optical signatures , 2015 .

[2]  M. Bazzan,et al.  Polaronic deformation at theFe2+/3+impurity site inFe:LiNbO3crystals , 2015 .

[3]  W. Schmidt,et al.  IntrinsicLiNbO3point defects from hybrid density functional calculations , 2014 .

[4]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[5]  Y. Kong,et al.  Fast photorefractive response of vanadium-doped lithium niobate in the visible region. , 2012, Optics letters.

[6]  A. Pasquarello,et al.  Band-edge problem in the theoretical determination of defect energy levels: The O vacancy in ZnO as a benchmark case , 2011, 1204.4127.

[7]  Wolf Gero Schmidt,et al.  Group-VII point defects in ZnSe , 2011 .

[8]  W. Lambrecht Which electronic structure method for the study of defects: A commentary , 2011 .

[9]  Y. Kong,et al.  Improved ultraviolet photorefractive properties of vanadium-doped lithium niobate crystals. , 2011, Optics letters.

[10]  Wolf Gero Schmidt,et al.  Lithium niobateX-cut,Y-cut, andZ-cut surfaces fromab initiotheory , 2010 .

[11]  C Merschjann,et al.  Electron small polarons and bipolarons in LiNbO3 , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[13]  Alex Zunger,et al.  Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs , 2008 .

[14]  C. Park,et al.  First-principles study of microscopic properties of the Nb antisite in LiNbO 3 : Comparison to phenomenological polaron theory , 2008 .

[15]  V. Gopalan,et al.  Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations , 2008 .

[16]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[17]  Frank Fuchs,et al.  LiNbO3 ground- and excited-state properties from first-principles calculations , 2008 .

[18]  V. Gopalan,et al.  Defect–Domain Wall Interactions in Trigonal Ferroelectrics , 2007 .

[19]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[20]  Wang Haili,et al.  Near-stoichiometric LiNbO3 crystal grown using the Czochralski method from Li-rich melt , 2004 .

[21]  Guoquan Zhang,et al.  Ultraviolet photorefractivity features in doped lithium niobate crystals , 2004 .

[22]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[23]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[24]  U. Gerstmann,et al.  Charge corrections for supercell calculations of defects in semiconductors , 2003 .

[25]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[26]  R. Feigelson,et al.  An approach to the defect structure analysis of lithium niobate single crystals , 1999 .

[27]  K. Kitamura,et al.  Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system , 1999 .

[28]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[29]  V. Gopalan,et al.  Crystal growth and low coercive field 180° domain switching characteristics of stoichiometric LiTaO3 , 1998 .

[30]  D. McMillen,et al.  Holographic recording in specially doped lithium niobate crystals. , 1998, Optics express.

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[33]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[34]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[35]  C. Catlow,et al.  Computer-simulation studies of intrinsic defects in LiNbO3 crystals. , 1989, Physical review. B, Condensed matter.

[36]  S. Erdei,et al.  The twisting of LiNbO3 single crystals grown by the Czochralski method , 1989 .

[37]  S. Abrahams,et al.  Defect structure dependence on composition in lithium niobate , 1986 .

[38]  Robert Gerson,et al.  Increased optical damage resistance in lithium niobate , 1984 .

[39]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[40]  Philip W. Anderson,et al.  Model for the Electronic Structure of Amorphous Semiconductors , 1975 .

[41]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[42]  A. Savage,et al.  Pyroelectricity and Spontaneous Polarization in LiNbO3 , 1966 .

[43]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[44]  A. Ballman Growth of Piezoelectric and Ferroelectric Materials by the CzochraIski Technique , 1965 .

[45]  G. D. Boyd,et al.  LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL , 1964 .

[46]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[47]  F. Bechstedt Quasiparticle corrections for energy gaps in semiconductors , 1992 .

[48]  D. M. Smyth The role of impurities in insultating transition metal oxides , 1984 .