On improper colouring of unit disk graphs

Motivated by a satellite communications problem, we consider a generalised colouring problem on unit disk graphs. A colouring is k-improper if no vertex receives the same colour as k+1 of its neighbours. The k-improper chromatic number χ(G) is the least number of colours needed in a k-improper colouring of a graph G. The main subject of this work is analysing the complexity of computing χ for the class of unit disk graph and some related classes, e.g. hexagonal graphs and interval graphs. We show NP-completeness in many restricted cases and also provide both positive and negative approximability results. Due to the challenging nature of this topic, many seemingly simple questions remain: for example, it remains open to determine the complexity of computing χ for unit interval graphs. Key-words: improper colouring, defective colouring, unit disk graph, interval graph, triangular lattice, hexagonal graph, weighted colouring. This work was partially supported by Région Provence-Alpes-Côte D’Azur. ∗ mascotte, i3s (cnrs-unsa) – inria, 2004 Route des Lucioles, 06902 Sophia Antipolis Cedex, France. E-mail: fhavet@sophia.inria.fr. † Department of Statistics, 1 South Parks Road, Oxford OX1 3TG, United Kingdom. E-mail: kang@stats.ox.ac.uk. This author is partially supported by NSERC of Canada and the Commonwealth Scolarship Commission (UK). ‡ Institute for Theoretical Computer Science (iti) and Department of Applied Mathematics (kam), Faculty of Mathematics and Physics, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic. E-mail: sereni@kam.mff.cuni.cz. This author is supported by the European project ist fet Aeolus. Coloration impropre des graphes d’intersection de disques unitaires Résumé : Nous modélisons un problème de télécommunications à l’aide des graphes d’intersection de disques unitaires, et d’une généralisation de la notion de coloration. Une coloration est kimpropre si chaque sommet a la couleur d’au plus k de ses voisins. Le nombre chromatique k-impropre χ(G) du graphe G est le plus petit nombre de couleurs pour lequel G admette une coloration k-impropre. Nous étudions la complexité de la détermination de χ lorsque l’on se restreint à la classe des graphes d’intersection de disques unitaires, ainsi qu’à d’autres classes de graphes utiles pour la modélisation des problèmes de télécommunications (comme par exemple les graphes hexagonaux). Nous prouvons que ce problème est NP-complet dans de nombreux cas, et fournissons également des résultats positifs et négatifs d’approximation. Mots-clés : coloration impropre, graphe d’intersection de disques, graphe d’intervalles, réseau triangulaire, graphe hexagonal, coloration pondérée. Improper colouring of unit disk graphs 3

[1]  Harry B. Hunt,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998, J. Algorithms.

[2]  Douglas R. Woodall,et al.  Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency , 1986, J. Graph Theory.

[3]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[4]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Goos Kant,et al.  2-Visibility Drawings of Planar Graphs , 1996, GD.

[7]  Kathie Cameron,et al.  Finding a maximum induced matching in weakly chordal graphs , 2003, Discret. Math..

[8]  Timothy F. Havel,et al.  The combinatorial distance geometry method for the calculation of molecular conformation. I. A new approach to an old problem. , 1983, Journal of theoretical biology.

[9]  Thomas C. Hull,et al.  Defective List Colorings of Planar Graphs , 1997 .

[10]  Wayne Goddard,et al.  Defective coloring revisited , 1997, J. Graph Theory.

[11]  Horst Sachs,et al.  Coin graphs, Polyhedra, and conformal mapping , 1994, Discret. Math..

[12]  Klaus Jansen,et al.  Polynomial-time approximation schemes for geometric graphs , 2001, SODA '01.

[13]  Bruce A. Reed,et al.  Colouring proximity graphs in the plane , 1999, Discret. Math..

[14]  Ryan B. Hayward,et al.  Weakly triangulated graphs , 1985, J. Comb. Theory B.

[15]  David G. Kirkpatrick,et al.  On the Complexity of Recognizing Intersection and Touching Graphs of Disks , 1995, GD.

[16]  Alan A. Bertossi,et al.  Total Domination and Irredundance in Weighted Interval Graphs , 1988, SIAM J. Discret. Math..

[17]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[18]  David G. Kirkpatrick,et al.  Unit disk graph recognition is NP-hard , 1998, Comput. Geom..

[19]  Robert W. Irving On Approximating the Minimum Independent Dominating Set , 1991, Inf. Process. Lett..

[20]  Stephen Hurley,et al.  Methods and algorithms for radio channel assignment , 2002 .

[21]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[22]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[23]  Jeremy P. Spinrad,et al.  Robust algorithms for restricted domains , 2001, SODA '01.

[24]  Eitan Altman,et al.  Quasi-Optimal Resource Allocation in Multispot MFTDMA Satellite Networks , 2005 .

[25]  Andrzej Lingas,et al.  On the maximum q-dependent set problem , 2007 .

[26]  Juraj Bosák,et al.  Decompositions of Graphs , 1990 .

[27]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[28]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[29]  Ioannis G. Tollis,et al.  Orthogonal Drawing of High Degree Graphs with Small Area and Few Bends , 1997, WADS.

[30]  A. Gräf,et al.  On Coloring Unit Disk Graphs , 1998, Algorithmica.

[31]  Stephan Olariu,et al.  An Optimal Greedy Heuristic to Color Interval Graphs , 1991, Inf. Process. Lett..

[32]  Gerhard Weißenfels,et al.  On the chromatic number of disk graphs , 1998, Networks.

[33]  Riste Škrekovski List Improper Colourings of Planar Graphs , 1999 .

[34]  MaratheMadhav,et al.  NC-Approximation Schemes for NP- and PSPACE-Hard Problems for Geometric Graphs , 1998 .

[35]  Jan Kratochvíl,et al.  Representing graphs by disks and balls (a survey of recognition-complexity results) , 2001, Discret. Math..

[36]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[37]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[38]  Harry B. Hunt,et al.  Simple heuristics for unit disk graphs , 1995, Networks.

[39]  F. McMorris,et al.  Topics in Intersection Graph Theory , 1987 .

[40]  C. P. Rangan,et al.  A Unified Approach to Domination Problems on Interval Graphs , 1988, Inf. Process. Lett..

[41]  Robin Thomas,et al.  Efficiently four-coloring planar graphs , 1996, STOC '96.

[42]  M.J.P. Peeters,et al.  On coloring j-unit sphere graphs , 1991 .

[43]  Bruce A. Reed,et al.  Channel assignment and weighted coloring , 2000, Networks.

[44]  Margit Voigt,et al.  List colourings of planar graphs , 2006, Discret. Math..

[45]  Ewa Drgas-Burchardt,et al.  Generalized list colourings of graphs , 1995, Discuss. Math. Graph Theory.

[46]  Klaus Jansen,et al.  The Maximum k-Dependent and f-Dependent Set Problem , 1993, ISAAC.

[47]  Fanica Gavril,et al.  Algorithms on circular-arc graphs , 1974, Networks.

[48]  T. Ibaraki,et al.  The Computational Complexity of the m -Center Problems on the Plane , 1981 .

[49]  Colin McDiarmid,et al.  Random channel assignment in the plane , 2003, Random Struct. Algorithms.

[50]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[51]  Riste Skrekovski List improper colorings of planar graphs with prescribed girth , 2000, Discret. Math..

[52]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[53]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[54]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[55]  Lata Narayanan,et al.  Static Frequency Assignment in Cellular Networks , 2001, Algorithmica.

[56]  Jerrold R. Griggs,et al.  Interval graphs and maps of DNA. , 1986, Bulletin of mathematical biology.