Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering

This study proposes an evolutionary-based clustering algorithm based on a hybrid of genetic algorithm (GA) and particle swarm optimization algorithm (PSOA) for order clustering in order to reduce surface mount technology (SMT) setup time. Simulational results via Iris, Glass, Vowel and Wine benchmark data sets indicate that the proposed evolutionary-based clustering algorithm is more accurate than the GA-based and PSOA-based clustering algorithms. In addition, the model evaluation results which use order information provided by an international industrial personal computer (PC) manufacturer show that the proposed algorithm is also superior to GA-based and PSOA-based clustering algorithms. Through order clustering, scheduling orders that belong to the same cluster together can reduce production time as well as machine idle time.

[1]  Ickjai Lee,et al.  AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets , 2000 .

[2]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[3]  K. Chang,et al.  Integration of Self-Organizing Feature Maps and Genetic-Algorithm-Based Clustering Method for Market Segmentation , 2004, J. Organ. Comput. Electron. Commer..

[4]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[5]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[6]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[7]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[8]  Wei Xiong,et al.  An Improved Particle Swarm Optimization Algorithm for Unit Commitment , 2008, 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA).

[9]  Sudipto Guha,et al.  CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.

[10]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  S. Grossberg,et al.  ART 2: self-organization of stable category recognition codes for analog input patterns. , 1987, Applied optics.

[12]  Josiane Zerubia,et al.  Fully unsupervised fuzzy clustering with entropy criterion , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[13]  M. Narasimha Murty,et al.  Genetic K-means algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[14]  Xingsheng Gu,et al.  A novel particle swarm optimization algorithm for permutation flow-shop scheduling to minimize makespan ☆ , 2008 .

[15]  James C. Bezdek,et al.  Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm , 1992, IEEE Trans. Neural Networks.

[16]  R. J. Kuo,et al.  Application of ant K-means on clustering analysis , 2005 .

[17]  James C. Bezdek,et al.  Clustering with a genetically optimized approach , 1999, IEEE Trans. Evol. Comput..

[18]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[19]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[20]  R. J. Kuo,et al.  An application of particle swarm optimization algorithm to clustering analysis , 2011, Soft Comput..

[21]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[22]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[23]  R. J. Kuo,et al.  Integration of ART2 neural network and genetic K-means algorithm for analyzing Web browsing paths in electronic commerce , 2005, Decis. Support Syst..

[24]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[25]  Ching-Yi Chen,et al.  Particle swarm optimization algorithm and its application to clustering analysis , 2004, 2012 Proceedings of 17th Conference on Electrical Power Distribution.

[26]  R. J. Kuo,et al.  Integration of self-organizing feature maps neural network and genetic K-means algorithm for market segmentation , 2006, Expert Syst. Appl..

[27]  A. Engelbrecht,et al.  A new locally convergent particle swarm optimiser , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[28]  Kai Cao,et al.  A Learning Algorithm of Artificial Neural Network Based on GA - PSO , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[29]  C. A. Murthy,et al.  In search of optimal clusters using genetic algorithms , 1996, Pattern Recognit. Lett..

[30]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[31]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[32]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[33]  Stephen Grossberg,et al.  Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system , 1991, Neural Networks.

[34]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[35]  Leandro N. de Castro,et al.  Data Clustering with Particle Swarms , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[36]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[37]  Khaled S. Al-Sultan,et al.  Computational experience on four algorithms for the hard clustering problem , 1996, Pattern Recognit. Lett..

[38]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[39]  Khaled S. Al-Sultan,et al.  A Tabu search approach to the clustering problem , 1995, Pattern Recognit..

[40]  K. Huang,et al.  A synergistic automatic clustering technique (SYNERACT) for multispectral image Analysis , 2002 .

[41]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[43]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[44]  Andries Petrus Engelbrecht,et al.  Dynamic clustering using particle swarm optimization with application in image segmentation , 2006, Pattern Analysis and Applications.

[45]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[46]  Russell C. Eberhart,et al.  Gene clustering using self-organizing maps and particle swarm optimization , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[47]  Sudipto Guha,et al.  ROCK: a robust clustering algorithm for categorical attributes , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[48]  Lin-Yu Tseng,et al.  A genetic approach to the automatic clustering problem , 2001, Pattern Recognit..

[49]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[50]  G H Ball,et al.  A clustering technique for summarizing multivariate data. , 1967, Behavioral science.

[51]  Ickjai Lee,et al.  AMOEBA: HIERARCHICAL CLUSTERING BASED ON SPATIAL PROXIMITY USING DELAUNATY DIAGRAM , 2000 .

[52]  Amir B. Geva,et al.  Hierarchical unsupervised fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[53]  Vipin Kumar,et al.  Chameleon: Hierarchical Clustering Using Dynamic Modeling , 1999, Computer.