Hybrid Sliding Mode Control of DFIG with MPPT Using Three Multicellular Converters

Abstract This paper deals with hybrid sliding mode control of Doubly Fed Induction Generator DFIG with Maximum Power Point Tracking MPPT connected by rotor side to three bridges of Multicellular Converters MCCs. The hybrid aspect of the converters is taken into consideration which includes the continuous and discrete states of the converters. The vector control is used to command the DFIG speed and reactive stator power. The currents in Park d-q reference are controlled using hybrid sliding mode. The sliding surfaces are developed using Lyapunov stability method. The developed controller allows decoupled control of the stator active and reactive power. The final results are illustrated at the end of this paper to present the advantages of the control method developed in this paper.

[1]  Kostas Kalaitzakis,et al.  Design of a maximum power tracking system for wind-energy-conversion applications , 2006, IEEE Transactions on Industrial Electronics.

[2]  Dianguo Xu,et al.  Sliding Mode MPPT Control of Variable Speed Wind Power System , 2009, 2009 Asia-Pacific Power and Energy Engineering Conference.

[3]  Hamid Toliyat,et al.  Integrated Doubly Fed Electric Alternator/Active Filter (IDEA), a Viable Power Quality Solution, for Wind Energy Conversion Systems , 2008, IEEE Transactions on Energy Conversion.

[4]  Friedrich Wilhelm Fuchs,et al.  Current Sensor Fault Detection, Isolation, and Reconfiguration for Doubly Fed Induction Generators , 2009, IEEE Transactions on Industrial Electronics.

[5]  R. Billinton,et al.  Generating capacity adequacy associated with wind energy , 2004, IEEE Transactions on Energy Conversion.

[6]  Mohamed Benbouzid,et al.  Multicell Converters Hybrid Sliding Mode Control , 2011 .

[7]  Youcef Bekakra,et al.  Active and Reactive Power Control of a DFIG with MPPT for Variable Speed Wind Energy Conversion using Sliding Mode Control , 2011 .

[8]  Arnaud Gaillard Système éolien basé sur une MADA : contribution à l'étude de la qualité de l'énergie électrique et de la continuité de service , 2010 .

[9]  Guillaume Gateau,et al.  Digital Sliding-Mode Observer Implementation Using FPGA , 2007, IEEE Transactions on Industrial Electronics.

[10]  Frede Blaabjerg,et al.  Review of Contemporary Wind Turbine Concepts and Their Market Penetration , 2004 .

[11]  T.A. Meynard,et al.  Natural Balance of Multicell Converters: The General Case , 2006, IEEE Transactions on Power Electronics.

[12]  Thierry Meynard,et al.  Multicell converters: basic concepts and industry applications , 2002, IEEE Trans. Ind. Electron..

[13]  Sohrab Asgarpoor,et al.  Voltage analysis of distribution systems with DFIG wind turbines , 2009, 2009 IEEE Power Electronics and Machines in Wind Applications.

[14]  Mohamed Djemai,et al.  High-order sliding mode control of a DC motor drive via a switched controlled multi-cellular converter , 2011, Int. J. Syst. Sci..

[15]  J. De Leon,et al.  Hybrid control of a multicellular converter , 2007 .

[16]  Michael Defoort,et al.  Binary signals design to control a power converter , 2011, IEEE Conference on Decision and Control and European Control Conference.

[17]  J. Van den Keybus,et al.  Distributed control of renewable generation units with integrated active filter , 2004, IEEE Transactions on Power Electronics.

[18]  Salma El Aimani Modélisation des différentes technologies d'éoliennes intégrées dans un réseau de moyenne tension , 2004 .

[19]  A. Gaillard,et al.  Active filtering capability of WECS with DFIG for grid power quality improvement , 2008, 2008 IEEE International Symposium on Industrial Electronics.