Compressive sensing in diffusion MRI

This thesis is dedicated to the development of new acquisition and processing methods in diffusion MRI (dMRI) to characterize the diffusion of water molecules in white matter fiber bundles at the scale of a voxel. In particular, we focus our attention on the accurate recovery of the Ensemble Average Propagator (EAP), which represents the full 3D displacement of water molecule diffusion. Diffusion models such that the Diffusion Tensor or the Orientation Distribution Function (ODF) are largely used in the dMRI community in order to quantify water molecule diffusion. These models are partial EAP representations and have been developed due to the small number of measurement required for their estimations. It is thus of utmost importance to be able to accurately compute the EAP and order to acquire a better understanding of the brain mechanisms and to improve the diagnosis of neurological disorders. Estimating the full 3D EAP requires the acquisition of many diffusion images sensitized todifferent orientations in the q-space, which render the estimation of the EAP impossible in most of the clinical dMRI scanner. A surge of interest has been seen in order to decrease this time for acquisition. Some works focus on the development of new and efficient acquisition sequences. In this thesis, we use sparse coding techniques, and in particular Compressive Sensing (CS) to accelerate the computation of the EAP. Multiple aspects of the CS theory and its application to dMRI are presented in this thesis.

[1]  V. Wedeen,et al.  Mapping fiber orientation spectra in cerebral white matter with Fourier-transform diffusion MRI , 2000 .

[2]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[3]  Christophe Lenglet,et al.  Geometric and variational methods for diffusion tensor MRI processing. (Méthodes géométriques et variationnelles pour le traitement d'IRM du tenseur de diffusion) , 2006 .

[4]  Rachid Deriche,et al.  Model-Free, Regularized, Fast, and Robust Analytical Orientation Distribution Function Estimation , 2010, MICCAI.

[5]  Rachid Deriche,et al.  A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features , 2013, Medical Image Anal..

[6]  Michael Elad,et al.  L1-L2 Optimization in Signal and Image Processing , 2010, IEEE Signal Processing Magazine.

[7]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[8]  S. Mallat A wavelet tour of signal processing , 1998 .

[9]  Luc Brun,et al.  Efficient and robust computation of PDF features from diffusion MR signal , 2009, Medical Image Anal..

[10]  Klaus-Dietmarmerboldt Self-Diffusion NMR Imaging Using Stimulated Echoes , 2004 .

[11]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[12]  Denis Le Bihan,et al.  Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .

[13]  D. Cory,et al.  Measurement of translational displacement probabilities by NMR: An indicator of compartmentation , 1990, Magnetic resonance in medicine.

[14]  J. Helpern,et al.  MRI quantification of non‐Gaussian water diffusion by kurtosis analysis , 2010, NMR in biomedicine.

[15]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[16]  Rachid Deriche,et al.  Ensemble Average Propagator Reconstruction via Compressed Sensing: Discrete or Continuous Bases ? , 2012 .

[17]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[18]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[19]  Rachid Deriche,et al.  Compressive Sensing Ensemble Average Propagator Estimation via L1 Spherical Polar Fourier Imaging , 2011 .

[20]  Rachid Deriche,et al.  Compressed Sensing for Accelerated EAP Recovery in Diffusion MRI , 2010, MICCAI 2010.

[21]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[22]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[23]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[24]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[25]  Rachid Deriche,et al.  Theoretical Analysis and Practical Insights on EAP Estimation via a Unified HARDI Framework , 2011 .

[26]  Yogesh Rathi,et al.  Spatially Regularized Compressed Sensing for High Angular Resolution Diffusion Imaging , 2011, IEEE Transactions on Medical Imaging.

[27]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[28]  Rachid Deriche,et al.  Parametric Dictionary Learning for Modeling EAP and ODF in Diffusion MRI , 2012, MICCAI.

[29]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[30]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[31]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[32]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[33]  Yonina C. Eldar Uncertainty Relations for Shift-Invariant Analog Signals , 2008, IEEE Transactions on Information Theory.

[34]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[35]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[36]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[37]  Yogesh Rathi,et al.  On Approximation of Orientation Distributions by Means of Spherical Ridgelets , 2008, IEEE Transactions on Image Processing.

[38]  Mathews Jacob,et al.  Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[39]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[40]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[41]  Rachid Deriche,et al.  Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets , 2009, Medical Image Anal..

[42]  R. Howard,et al.  Local convergence analysis of a grouped variable version of coordinate descent , 1987 .

[43]  Rachid Deriche,et al.  Incremental gradient table for multiple Q-shells diffusion MRI , 2011 .

[44]  Rachid Deriche,et al.  Tractography via the Ensemble Average Propagator in Diffusion MRI , 2012, MICCAI.

[45]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[46]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[47]  Vincent Arsigny,et al.  Processing Data in Lie Groups : An Algebraic Approach. Application to Non-Linear Registration and Diffusion Tensor MRI. (Traitement de données dans les groupes de Lie : une approche algébrique. Application au recalage non-linéaire et à l'imagerie du tenseur de diffusion) , 2006 .

[48]  Dong Liang,et al.  A model-based method with joint sparsity constraint for direct diffusion tensor estimation , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[49]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[50]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[51]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[52]  R. M. Willett,et al.  Compressed sensing for practical optical imaging systems: A tutorial , 2011, IEEE Photonics Conference 2012.

[53]  Rachid Deriche,et al.  Variational frameworks for DT-MRI estimation, regularization and visualization , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[54]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[55]  Kawin Setsompop,et al.  Parallel RF transmission with eight channels at 3 Tesla , 2006, Magnetic resonance in medicine.

[56]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[57]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[58]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[59]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[60]  Julien Cohen-Adad,et al.  Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries , 2012, MICCAI.

[61]  K. Trinkaus,et al.  Quantification of increased cellularity during inflammatory demyelination. , 2011, Brain : a journal of neurology.

[62]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[63]  Rachid Deriche,et al.  Impact of Radial and Angular Sampling on Multiple Shells Acquisition in Diffusion MRI , 2011, MICCAI.

[64]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[65]  Rachid Deriche,et al.  Multiple q-shell diffusion propagator imaging , 2011, Medical Image Anal..

[66]  Carl-Fredrik Westin,et al.  Sparse Multi-Shell Diffusion Imaging , 2011, MICCAI.

[67]  Lee Ryan,et al.  Model-based compressive diffusion tensor imaging , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[68]  Nicholas Ayache,et al.  Clinical DT-MRI estimation, smoothing and fiber tracking with Log-Euclidean metrics , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[69]  Wenxing Ye,et al.  An over-complete dictionary based regularized reconstruction of a field of ensemble average propagators , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[70]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[71]  Carl-Fredrik Westin,et al.  Probabilistic ODF Estimation from Reduced HARDI Data with Sparse Regularization , 2011, MICCAI.

[72]  A. Ravishankar Rao,et al.  Prediction and interpretation of distributed neural activity with sparse models , 2009, NeuroImage.

[73]  Li-Wei Kuo,et al.  Diffusion spectrum MRI using body-centered-cubic and half-sphere sampling schemes , 2013, Journal of Neuroscience Methods.

[74]  Maxime Descoteaux,et al.  Sparse DSI: Learning DSI Structure for Denoising and Fast Imaging , 2012, MICCAI.

[75]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[76]  B. Vemuri,et al.  Generalized scalar measures for diffusion MRI using trace, variance, and entropy , 2005, Magnetic resonance in medicine.

[77]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[78]  Rachid Deriche,et al.  Diffusion MRI signal reconstruction with continuity constraint and optimal regularization , 2012, Medical Image Anal..

[79]  Rachel Ward,et al.  Compressed Sensing With Cross Validation , 2008, IEEE Transactions on Information Theory.

[80]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[81]  Rachid Deriche,et al.  Spherical Polar Fourier EAP and odf reconstruction via compressed sensing in diffusion mri , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[82]  Peter Craven,et al.  Smoothing noisy data with spline functions , 1978 .

[83]  T. Kapur,et al.  Fiber Tractography Based on Diffusion Tensor Imaging Compared with High-angular-resolution Diffusion Imaging with Compressed Sensing: Initial Experience , 2022 .

[84]  Rachid Deriche,et al.  Parametric Dictionary Learning in Diffusion MRI , 2012, ISBI 2012.

[85]  C. Hardy,et al.  Accelerated diffusion spectrum imaging in the human brain using compressed sensing , 2011, Magnetic resonance in medicine.

[86]  Gyunggoo Cho,et al.  Acceleration of multi-dimensional propagator measurements with compressed sensing. , 2011, Journal of magnetic resonance.

[87]  Rachid Deriche,et al.  Optimal Design of Multiple Q-shells experiments for Diffusion MRI , 2011 .

[88]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[89]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[90]  P J Basser,et al.  New Histological and Physiological Stains Derived from Diffusion‐Tensor MR Images , 1997, Annals of the New York Academy of Sciences.

[91]  Jean-Luc Starck,et al.  Compressed Sensing in Astronomy , 2008, IEEE Journal of Selected Topics in Signal Processing.

[92]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[93]  Rachid Deriche,et al.  Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization , 2002, ECCV.

[94]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[95]  P. Basser,et al.  Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI , 2009 .

[96]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[97]  E. Hahn,et al.  Spin Echoes , 2011 .

[98]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[99]  C. R. Henson Conclusion , 1969 .

[100]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[101]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[102]  P. Vandergheynst,et al.  Compressed sensing imaging techniques for radio interferometry , 2008, 0812.4933.

[103]  Jerry L. Prince,et al.  Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI , 2012, NeuroImage.

[104]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[105]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[106]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[107]  Shengli Zhou,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009, OCEANS 2009-EUROPE.

[108]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[109]  Daniel C. Alexander,et al.  Maximum Entropy Spherical Deconvolution for Diffusion MRI , 2005, IPMI.

[110]  Nikos Paragios,et al.  A Convex Semi-definite Positive Framework for DTI Estimation and Regularization , 2007, ISVC.

[111]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[112]  Turgut Durduran,et al.  Compressed sensing in diffuse optical tomography. , 2010, Optics express.

[113]  F Calamante,et al.  Effects of diffusion anisotropy on lesion delineation in a rat model of cerebral ischemia , 1997, Magnetic resonance in medicine.

[114]  M. Descoteaux High angular resolution diffusion MRI : from local estimation to segmentation and tractography , 2008 .

[115]  Rachid Deriche,et al.  Model-Free and Analytical EAP Reconstruction via Spherical Polar Fourier Diffusion MRI , 2010, MICCAI.

[116]  Rachid Deriche,et al.  Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI , 2013, Medical Image Anal..

[117]  Rachid Deriche,et al.  Diffusion and multiple orientations from 1.5 MR systems with limited gradient tables , 2012 .

[118]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[119]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[120]  Ganesh Adluru,et al.  Reordering for Improved Constrained Reconstruction from Undersampled k-Space Data , 2008, Int. J. Biomed. Imaging.

[121]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[122]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[123]  Moo K. Chung,et al.  Bessel Fourier Orientation Reconstruction: An Analytical EAP Reconstruction Using Multiple Shell Acquisitions in Diffusion MRI , 2011, MICCAI.

[124]  Carl-Fredrik Westin,et al.  Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging , 2009, NeuroImage.

[125]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[126]  Joseph Lipka,et al.  A Table of Integrals , 2010 .