The mechanism of hydrogen uptake in [NiFe] hydrogenase: first-principles molecular dynamics investigation of a model compound

[1]  E. Williams,et al.  An improved cluster pair correlation method for obtaining the absolute proton hydration energy and enthalpy evaluated with an expanded data set. , 2010, Journal of Physical Chemistry B.

[2]  M. Field,et al.  A structural and functional mimic of the active site of NiFe hydrogenases. , 2010, Chemical communications.

[3]  I. Tavernelli,et al.  Electron localization dynamics in the triplet excited state of [Ru(bpy)3]2+ in aqueous solution. , 2010, Chemistry.

[4]  I. Tavernelli,et al.  Cover Picture: Electron Localization Dynamics in the Triplet Excited State of [Ru(bpy)3]2+ in Aqueous Solution (Chem. Eur. J. 20/2010) , 2010 .

[5]  Y. Higuchi,et al.  Concerto catalysis--harmonising [NiFe]hydrogenase and NiRu model catalysts. , 2010, Dalton transactions.

[6]  M. Field,et al.  Mechanism of hydrogen evolution catalyzed by NiFe hydrogenases: insights from a Ni-Ru model compound. , 2010, Dalton transactions.

[7]  Donald G. Truhlar,et al.  Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods , 2010 .

[8]  P. D. Tran,et al.  From Hydrogenases to Noble Metal–Free Catalytic Nanomaterials for H2 Production and Uptake , 2009, Science.

[9]  M. Field,et al.  Cyclopentadienyl ruthenium-nickel catalysts for biomimetic hydrogen evolution: electrocatalytic properties and mechanistic DFT studies. , 2009, Chemistry.

[10]  S. Ogo Electrons from hydrogen. , 2009, Chemical communications.

[11]  Vincenzo Barone,et al.  Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases , 2009, J. Comput. Chem..

[12]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[14]  D. Marx,et al.  Quantum effects on vibrational and electronic spectra of hydrazine studied by "on-the-fly" ab initio ring polymer molecular dynamics. , 2009, The journal of physical chemistry. A.

[15]  F. Gygi,et al.  Melting of ice under pressure , 2008, Proceedings of the National Academy of Sciences.

[16]  M. Fontecave,et al.  Modelling NiFe hydrogenases: nickel-based electrocatalysts for hydrogen production. , 2008, Dalton transactions.

[17]  D. Marx,et al.  Dynamical magnetostructural properties of Anabaena ferredoxin , 2007, Proceedings of the National Academy of Sciences.

[18]  C. Mealli,et al.  Models for the hydrogenases put the focus where it should be--hydrogen. , 2007, Angewandte Chemie.

[19]  Per E M Siegbahn,et al.  Computational studies of [NiFe] and [FeFe] hydrogenases. , 2007, Chemical reviews.

[20]  G. Kubas,et al.  Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. , 2007, Chemical reviews.

[21]  W. Lubitz,et al.  [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. , 2007, Chemical reviews.

[22]  M. Fontecave,et al.  Dinuclear Nickel–Ruthenium Complexes as Functional Bio-Inspired Models of [NiFe] Hydrogenases , 2007 .

[23]  S. Fukuzumi,et al.  A Dinuclear Ni(µ-H)Ru Complex Derived from H2 , 2007, Science.

[24]  T. Rauchfuss A Promising Mimic of Hydrogenase Activity , 2007, Science.

[25]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[26]  Francesco Luigi Gervasio,et al.  Investigating biological systems using first principles Car-Parrinello molecular dynamics simulations. , 2007, Current opinion in structural biology.

[27]  E. Meijer,et al.  Realistic modeling of ruthenium-catalyzed transfer hydrogenation. , 2007, Journal of the American Chemical Society.

[28]  Arvi Rauk,et al.  Ab initio modelling of the structure and redox behaviour of copper(I) bound to a His–His model peptide: relevance to the β-amyloid peptide of Alzheimer’s disease , 2007, JBIC Journal of Biological Inorganic Chemistry.

[29]  A. Seitsonen,et al.  Molecular Dynamics Simulation of Liquid Water: Hybrid Density Functionals† , 2006 .

[30]  M. Bruschi,et al.  DFT investigations of models related to the active site of [NiFe] and [Fe] hydrogenases , 2005 .

[31]  F. Armstrong Hydrogenases: active site puzzles and progress. , 2004, Current opinion in chemical biology.

[32]  R. Car,et al.  First-principle molecular dynamics with ultrasoft pseudopotentials: parallel implementation and application to extended bioinorganic systems. , 2003, The Journal of chemical physics.

[33]  A. Volbeda,et al.  The active site and catalytic mechanism of NiFe hydrogenasesBased on the presentation given at Dalton Discussion No. 6, 9?11th September 2003, University of York, UK. , 2003 .

[34]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[35]  M. Darensbourg,et al.  The Bio-organometallic Chemistry of Active Site Iron in Hydrogenases , 2000 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[38]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[39]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[40]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[41]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[42]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[43]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[44]  R. Parr Density-functional theory of atoms and molecules , 1989 .