Flexible heterogeneous data fusion strategy for object positioning applications in edge computing environment

[1]  Chunlin Li,et al.  Dynamic placement of multiple controllers based on SDN and allocation of computational resources based on heuristic ant colony algorithm , 2022, Knowl. Based Syst..

[2]  Chunlin Li,et al.  Intermediate data placement and cache replacement strategy under Spark platform , 2022, J. Parallel Distributed Comput..

[3]  Elhadj Benkhelifa,et al.  An experimental framework for future smart cities using data fusion and software defined systems: The case of environmental monitoring for smart healthcare , 2020, Future Gener. Comput. Syst..

[4]  Xiaohai Zhang,et al.  An Optimal Data Fusion Algorithm in the Presence of Unknown Cross Covariances , 2020, IEEE Transactions on Automatic Control.

[5]  Siliang Lu,et al.  Edge Computing: A Promising Framework for Real-Time Fault Diagnosis and Dynamic Control of Rotating Machines Using Multi-Sensor Data , 2019, IEEE Sensors Journal.

[6]  Baohua Hu,et al.  Correction to: Spasticity assessment based on the Hilbert–Huang transform marginal spectrum entropy and the root mean square of surface electromyography signals: a preliminary study , 2019, BioMedical Engineering OnLine.

[7]  Teresa Riesgo,et al.  Edge and Fog Computing Platform for Data Fusion of Complex Heterogeneous Sensors , 2018, Sensors.

[8]  Dongjun Suh,et al.  Hybrid Particle Swarm Optimization for Multi-Sensor Data Fusion , 2018, Sensors.

[9]  Mohammad R. Jahanshahi,et al.  NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion , 2018, IEEE Transactions on Industrial Electronics.

[10]  Po-Hsuan Tseng,et al.  A Deep Neural Network-Based Indoor Positioning Method using Channel State Information , 2018, 2018 International Conference on Computing, Networking and Communications (ICNC).

[11]  T. Shevgunov,et al.  Averaged absolute spectral correlation density estimator , 2018, 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT).

[12]  Herke van Hoof,et al.  Addressing Function Approximation Error in Actor-Critic Methods , 2018, ICML.

[13]  Fabiano Hessel,et al.  Machine-learning-based system for multi-sensor 3D localisation of stationary objects , 2018, IET Cyper-Phys. Syst.: Theory & Appl..

[14]  Kian Hsiang Low,et al.  Gaussian process decentralized data fusion meets transfer learning in large-scale distributed cooperative perception , 2017, Autonomous Robots.

[15]  Smail Tedjini,et al.  Cleansing RFID data based on RSSI estimation , 2017, 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB).

[16]  Elman Mansimov,et al.  Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation , 2017, NIPS.

[17]  Qun Li,et al.  LAVEA: Latency-Aware Video Analytics on Edge Computing Platform , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[18]  Wenyu Zhang,et al.  Heterogeneous Sensor Data Fusion By Deep Multimodal Encoding , 2017, IEEE Journal of Selected Topics in Signal Processing.

[19]  Abdullah Kadri,et al.  IoT Localization for Bistatic Passive UHF RFID Systems With 3-D Radiation Pattern , 2017, IEEE Internet of Things Journal.

[20]  Kalyanmoy Deb,et al.  Handling inverse optimal control problems using evolutionary bilevel optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[21]  Weiping Zhu,et al.  Accurate and Efficient Object Tracking Based on Passive RFID , 2015, IEEE Transactions on Mobile Computing.

[22]  H. Jin Kim,et al.  Target Localization in Wireless Sensor Networks Using Online Semi-Supervised Support Vector Regression , 2015, Sensors.

[23]  Nilesh U. Sambhe,et al.  A novel data cleaning algorithm using RFID and WSN integration , 2015, 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS).

[24]  Kin-Man Lam,et al.  A new key frame representation for video segment retrieval , 2005, IEEE Transactions on Circuits and Systems for Video Technology.

[25]  Tie-Yan Liu,et al.  Dynamic selection and effective compression of key frames for video abstraction , 2003, Pattern Recognit. Lett..

[26]  Avideh Zakhor,et al.  Applications of Video-Content Analysis and Retrieval , 2002, IEEE Multim..

[27]  Stephen W. Smoliar,et al.  An integrated system for content-based video retrieval and browsing , 1997, Pattern Recognit..

[28]  Sung Wook Baik,et al.  Efficient visual attention based framework for extracting key frames from videos , 2013, Signal Process. Image Commun..

[29]  Peng Jiang,et al.  Keyframe-Based Video Summary Using Visual Attention Clues , 2010, IEEE Multim..