Sharp regularity theory for second order hyperbolic equations of Neumann type

SummaryWe consider the mixed problem for a general, time independent, second order hyperbolic equation in the unknown u, with datum g ε L2(Σ) in the Neumann B.C., with datum f ε L2(Q) in the right hand side of the equation and, say, initial conditions u0=u1=0. We obtain sharp regularity results for u in Q and ù|∑ in ε, by a pseudo-differential approach on the half-space.

[1]  Irena Lasiecka,et al.  Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data , 1991 .

[2]  Jacques Louis Lions,et al.  Contrôle des systèmes distribués singuliers , 1983 .

[3]  G. Eskin Parametrix and propagation of singularities for the interior mixed hyperbolic problem , 1977 .

[4]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[5]  Mitsuru Ikawa,et al.  Mixed problems for hyperbolic equations of second order , 1968 .

[6]  R. Triggiani,et al.  Regularity of hyperbolic equations underL2(0,T; L2(Γ))-Dirichlet boundary terms , 1983 .

[7]  A trace theorem for solutions of the wave equation, and the remote determination of acoustic sources , 1983 .

[8]  Irena Lasiecka,et al.  A cosine operator approach to modelingL2(0,T; L2 (Γ))—Boundary input hyperbolic equations , 1981 .

[9]  R. Triggiani,et al.  A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations , 1988 .

[10]  G. Eskin Inttial-boundary value problems for second order hyperbolic equations with general boundary conditions II , 1985 .

[11]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[12]  G. Eskin Initial boundary value problem for second order hyperbolic equations with general boundary conditions I , 1981 .

[13]  Michael Taylor,et al.  Pseudo differential operators , 1974 .

[14]  R. Triggiani,et al.  Differential Riccati equations with unbounded coefficients: applications to boundary control/boundary observation hyperbolic problems , 1991 .

[15]  R. Triggiani,et al.  Trace regularity of the solutions of the wave equation with homogeneous Neumann boundary conditions and data supported away from the boundary , 1989 .

[16]  I. Lasiecka “Sharp” regularity results for mixed hyperbolic problems of second order , 1986 .

[17]  S. Miyatake Mixed problem for hyperbolic equation of second order , 1973 .

[18]  R. Sakamoto Mixed problems for hyperbolic equations I Energy inequalities , 1970 .

[19]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[20]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .