Closed-loop control of extracorporeal oxygen and carbon dioxide gas transfer

Abstract Additional extracorporeal gas transfer facilitates ultra-protective mechanical ventilation during treatment of severe lung disease. The proposed automation contributes to both patient safety and therapeutic success. A decentralized control system set the oxygen and carbon dioxide gas transfer rates. The controlled variables are estimated using standard measurement devices without direct blood contact. To reduce patient stress, an outer-loop integral controller adjusts the extracorporeal blood flow. The control system was first evaluated in silico and then in vivo using an animal model. Finally, the method is shown to be feasible and its response time is sufficient to meet patients' clinical needs.

[1]  Martin Hexamer,et al.  A mathematical model for the gas transfer in an oxygenator , 2003 .

[2]  Jan Claassen,et al.  Systemic glucose variability predicts cerebral metabolic distress and mortality after subarachnoid hemorrhage: a retrospective observational study , 2014, Critical Care.

[3]  D Elbourne,et al.  Randomised controlled trial and parallel economic evaluation of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR). , 2010, Health technology assessment.

[4]  Bruce Thomson,et al.  Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review , 2014, Critical Care.

[5]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[6]  Berno J. E. Misgeld,et al.  In silico evaluation of gas transfer estimation during extracorporeal membrane oxygenation , 2015 .

[7]  William S. Levine,et al.  The Control Handbook , 2005 .

[8]  J J Osborn,et al.  Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. , 1972, The New England journal of medicine.

[9]  Mitsuo Umezu,et al.  Effects of Turbulent Stresses upon Mechanical Hemolysis: Experimental and Computational Analysis , 2004, ASAIO journal.

[10]  Theodoros N. Arvanitis,et al.  A systematic review of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence. , 2010, Health technology assessment.

[11]  David J. Smith,et al.  LQG based robust tracking control of blood gases during extracorporeal membrane oxygenation , 2011, Proceedings of the 2011 American Control Conference.

[12]  R Kuhlen,et al.  Artificial lung and extracorporeal gas exchange. , 2005, Panminerva medica.

[13]  Alain Combes,et al.  Mechanical ventilation during extracorporeal membrane oxygenation , 2014, Critical Care.

[14]  Antonio Pesenti,et al.  ECMO-extracorporeal life support in adults , 2014 .

[15]  M. Walker Review , 2002 .

[16]  Steffen Leonhardt,et al.  Closed Loop Physiological ECMO Control , 2011 .

[17]  Jürgen Werner,et al.  Simultaneous automatic control of oxygen and carbon dioxide blood gases during cardiopulmonary bypass. , 2010, Artificial organs.

[18]  Massimo Cressoni,et al.  Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. , 2008, American journal of respiratory and critical care medicine.

[19]  P. Stafford,et al.  EXTRACORPOREAL LIFE SUPPORT (ECLS) FOR PEDIATRIC TRAUMA PATIENTS WITH RESPIRATORY FAILURE: THE EXTRACORPOREAL LIFE SUPPORT ORGANIZATION (ELSO) REGISTRY , 1998 .

[20]  Gunnar Meyrowitz,et al.  Automatisierung der Herz-Lungen-Maschine , 2005 .

[21]  R. Schmidt,et al.  Physiologie des Menschen : mit pathophysiologie , 2007 .

[22]  O. Siggaard‐Andersen,et al.  Measured and derived quantities with modern pH and blood gas equipment: Calculation algorithms with 54 equations , 1988 .

[23]  A. J. Bart,et al.  Mathematical analysis and digital simulation of the respiratory control system. , 1967, Journal of applied physiology.

[24]  M. Ertan Taskin,et al.  Study of flow-induced hemolysis using novel Couette-type blood-shearing devices. , 2011, Artificial organs.

[25]  Sylvie Chevret,et al.  Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. , 2013, American journal of respiratory and critical care medicine.

[26]  Steffen Leonhardt,et al.  Automation of long term extracorporeal oxygenation systems , 2009, 2009 European Control Conference (ECC).

[27]  A Mendoza García,et al.  Automation of a portable extracorporeal circulatory support system with adaptive fuzzy controllers. , 2014, Medical engineering & physics.

[28]  B Lachmann,et al.  In Vivo Lung Lavage as an Experimental Model of the Respiratory Distress Syndrome , 1980, Acta anaesthesiologica Scandinavica.

[29]  Julia med. Siebert,et al.  Die extrakoporale Membranoxygenierung (ECMO) bei Patienten mit vorausgegangener Herzoperation: eine retrospektive Analyse , 2010 .

[30]  Susanna Price,et al.  Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). , 2011, JAMA.