Generalized projection dynamics in evolutionary game theory

We introduce a new kind of projection dynamics by employing a ray-projection both locally and globally. By global (local) we mean a projection of a vector (close to the unit simplex) unto the unit simplex along a ray through the origin. Using a correspondence between local and global ray-projection dynamics we prove that every interior evolutionarily stable strategy is an asymptotically stable fixed point. We also show that every strict equilibrium is an evolutionarily stable state and an evolutionarily stable equilibrium. Then, we employ several projections on a wider set of functions derived from the payoff structure. This yields an interesting class of so-called generalized projection dynamics which contains best-response, logit, replicator, and Brown-Von-Neumann dynamics among others.

[1]  Akihiko Matsui,et al.  Best response dynamics and socially stable strategies , 1992 .

[2]  P. Samuelson A Note on the Pure Theory of Consumer's Behaviour: An Addendum , 1938 .

[3]  P. Samuelson A Note on the Pure Theory of Consumer's Behaviour , 1938 .

[4]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[5]  William H. Sandholm,et al.  Pairwise Comparison Dynamics and Evolutionary Foundations for Nash Equilibrium , 2009, Games.

[6]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[7]  John Nachbar “Evolutionary” selection dynamics in games: Convergence and limit properties , 1990 .

[8]  J. Weibull,et al.  Evolutionary Selection in Normal-Form Games , 1995 .

[9]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[10]  M. Cripps The theory of learning in games. , 1999 .

[11]  William H. Sandholm,et al.  ON THE GLOBAL CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY , 2002 .

[12]  E. Zeeman Dynamics of the evolution of animal conflicts , 1981 .

[13]  J. Hofbauer From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS , 2001 .

[14]  L. Hurwicz,et al.  SOME REMARKS ON THE EQUILIBRIA OF ECONOMIC SYSTEMS , 1960 .

[15]  Jeroen M. Swinkels Adjustment Dynamics and Rational Play in Games , 1993 .

[16]  Lars-Göran Mattsson,et al.  Probabilistic choice and procedurally bounded rationality , 2002, Games Econ. Behav..

[17]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[18]  A. Smithies The Stability of Competitive Equilibrium , 1942 .

[19]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[20]  J. Sobel,et al.  On the limit points of discrete selection dynamics , 1992 .

[21]  Michael J. Smith,et al.  The Stability of a Dynamic Model of Traffic Assignment - An Application of a Method of Lyapunov , 1984, Transp. Sci..

[22]  Rajiv Sethi Strategy-Specific Barriers to Learning and Nonmonotonic Selection Dynamics☆☆☆ , 1998 .

[23]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[24]  William H. Sandholm,et al.  Excess payoff dynamics and other well-behaved evolutionary dynamics , 2005, J. Econ. Theory.

[25]  William H. Sandholm,et al.  The projection dynamic and the geometry of population games , 2008, Games Econ. Behav..

[26]  Franz J. Weissing,et al.  Evolutionary stability and dynamic stability in a class of evolutionary normal form games , 1991 .

[27]  L. Hurwicz,et al.  COMPETITIVE STABILITY UNDER WEAK GROSS SUBSTITUTABILITY: THE EUCLIDEAN DISTANCE APPROACH , 1960 .

[28]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[29]  H. Uzawa,et al.  Stability and Non-Negativity in a Walrasian Tatonnement Process , 1960 .

[30]  E. Hopkins Two Competing Models of How People Learn in Games (first version) , 1999 .

[31]  Joachim RosenmÜller Über periodizitätseigenschaften spieltheoretischer lernprozesse , 1971 .

[32]  Mark Voorneveld,et al.  The target projection dynamic , 2009, Games Econ. Behav..

[33]  H. Uzawa,et al.  The Stability of Dynamic Processes , 1961 .

[34]  Hugo Sonnenschein,et al.  Market Excess Demand Functions , 1972 .

[35]  P. Samuelson The Stability of Equilibrium: Comparative Statics and Dynamics , 1941 .

[36]  R. Joosten Walras and Darwin: an odd couple? , 2006 .

[37]  Hukukane Nikaido Stability of Equilibrium by the Brown-von Neumann Differential Equation , 1959 .

[38]  A. Nagurney,et al.  Projected Dynamical Systems and Variational Inequalities with Applications , 1995 .

[39]  T. Negishi THE STABILITY OF A COMPETITIVE ECONOMY: A SURVEY ARTICLE , 1962 .

[40]  K Sigmund,et al.  A note on evolutionary stable strategies and game dynamics. , 1979, Journal of theoretical biology.

[41]  Josef Hofbauer,et al.  Stable games and their dynamics , 2009, J. Econ. Theory.

[42]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[43]  Reinoud A.M.G. Joosten,et al.  Deterministic evolutionary dynamics: A unifying approach , 1996 .

[44]  E. Hopkins A Note on Best Response Dynamics , 1999 .

[45]  L. Hurwicz,et al.  ON THE STABILITY OF THE COMPETITIVE EQUILIBRIUM, I1 , 1958 .

[46]  E. Dierker Excess Demand Functions , 1974 .

[47]  Mark Voorneveld Probabilistic Choice in Games: Properties of Rosenthal’s t-Solutions , 2006, Int. J. Game Theory.

[48]  J. Weibull,et al.  Nash Equilibrium and Evolution by Imitation , 1994 .

[49]  R. Mantel On the characterization of aggregate excess demand , 1974 .

[50]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[51]  D. Friedman EVOLUTIONARY GAMES IN ECONOMICS , 1991 .