Thermoelectrics: From history, a window to the future

Thermoelectricity offers a sustainable path to recover and convert waste heat into readily available electric energy, and has been studied for more than two centuries. From the controversy between Galvani and Volta on the Animal Electricity, dating back to the end of the XVIII century and anticipating Seebeck's observations, the understanding of the physical mechanisms evolved along with the development of the technology. In the XIX century Orsted clarified some of the earliest observations of the thermoelectric phenomenon and proposed the first thermoelectric pile, while it was only after the studies on thermodynamics by Thomson, and Rayleigh's suggestion to exploit the Seebeck effect for power generation, that a diverse set of thermoelectric generators was developed. From such pioneering endeavors, technology evolved from massive, and sometimes unreliable, thermopiles to very reliable devices for sophisticated niche applications in the XX century, when Radioisotope Thermoelectric Generators for space missions and nuclear batteries for cardiac pacemakers were introduced. While some of the materials adopted to realize the first thermoelectric generators are still investigated nowadays, novel concepts and improved understanding of materials growth, processing, and characterization developed during the last 30 years have provided new avenues for the enhancement of the thermoelectric conversion efficiency, for example through nanostructuration, and favored the development of new classes of thermoelectric materials. With increasing demand for sustainable energy conversion technologies, the latter aspect has become crucial for developing thermoelectrics based on abundant and non-toxic materials, which can be processed at economically viable scales, tailored for different ranges of temperature. This includes high temperature applications where a substantial amount of waste energy can be retrieved, as well as room temperature applications where small and local temperature differences offer the possibility of energy scavenging, as in micro harvesters meant for distributed electronics such as sensor networks. While large scale applications have yet to make it to the market, the richness of available and emerging thermoelectric technologies presents a scenario where thermoelectrics is poised to contribute to a future of sustainable future energy harvesting and management. This work reviews the broad field of thermoelectrics. Progress in thermoelectrics and milestones that led to the current state-of-the-art are presented by adopting an historical footprint. The review begins with an historical excursus on the major steps in the history of thermoelectrics, from the very early discovery to present technology. A panel on the theory of thermoelectric transport in the solid state reviews the transport theory in complex crystal structures and nanostructured materials. Then, the most promising thermoelectric material classes are discussed one by one in dedicated sections and subsections, carefully highlighting the technological solutions on materials growth that have represented a turning point in the research on thermoelectrics. Finally, perspectives and the future of the technology are discussed in the framework of sustainability and environmental compatibility. © 2018 Elsevier B.V.

[1]  G. J. Snyder,et al.  Thermoelectric properties of Sr3GaSb3 – a chain-forming Zintl compound , 2012 .

[2]  A. Moure,et al.  Skutterudites as thermoelectric materials: revisited , 2015 .

[3]  J. Hsu,et al.  Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments , 2017 .

[4]  J. Hsu,et al.  Completely Organic Multilayer Thin Film with Thermoelectric Power Factor Rivaling Inorganic Tellurides , 2015, Advanced materials.

[5]  M. Kanatzidis,et al.  Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites† , 2010 .

[6]  T. Thompson,et al.  Protective enamel coating for n- and p-type skutterudite thermoelectric materials , 2015, Journal of Materials Science.

[7]  S. Kauzlarich,et al.  Tuning Thermoelectric Properties of Type I Clathrate K8–xBaxAl8+xSi38–x through Barium Substitution , 2016 .

[8]  E. F. Steigmeier,et al.  Thermal and Electrical Properties of Heavily Doped Ge‐Si Alloys up to 1300°K , 1964 .

[9]  Tiejun Zhu,et al.  Point Defect Engineering of High‐Performance Bismuth‐Telluride‐Based Thermoelectric Materials , 2014 .

[10]  Choongho Yu,et al.  Large thermoelectric figure-of-merits from SiGe nanowires by simultaneously measuring electrical and thermal transport properties. , 2012, Nano letters.

[11]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[12]  H. J. Goldsmid,et al.  Recent Studies of Bismuth Telluride and Its Alloys , 1961 .

[13]  J. Meiss,et al.  In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60 , 2012 .

[14]  Mark A. Rodriguez,et al.  Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films. , 2012, Physical review letters.

[15]  E. Case,et al.  Room-Temperature Mechanical Properties and Slow Crack Growth Behavior of Mg2Si Thermoelectric Materials , 2012, Journal of Electronic Materials.

[16]  Nick Bennett,et al.  Efficient thermoelectric performance in silicon nano-films by vacancy-engineering , 2015 .

[17]  H. Kosina,et al.  Simultaneous increase in electrical conductivity and Seebeck coefficient in highly boron-doped nanocrystalline Si , 2013, Nanotechnology.

[18]  C. Uher,et al.  Partial indium solubility induces chemical stability and colossal thermoelectric figure of merit in Cu2Se , 2017 .

[19]  G. Fecher,et al.  Itinerant half-metallic ferromagnets Co 2 Ti Z ( Z = Si , Ge , Sn ) : Ab initio calculations and measurement of the electronic structure and transport properties , 2010 .

[20]  G. J. Snyder,et al.  Towards high efficiency segmented thermoelectric unicouples , 2014 .

[21]  Jihui Yang,et al.  Realization of high thermoelectric performance in n-type partially filled skutterudites , 2011 .

[22]  S. Fabiano,et al.  Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics , 2018, ACS energy letters.

[23]  K. Kovnir,et al.  Semiconducting clathrates: synthesis, structure and properties , 2004 .

[24]  G. Bernard-Granger,et al.  Influence of in situ formed MoSi2 inclusions on the thermoelectrical properties of an N-type silicon–germanium alloy , 2014 .

[25]  Ctirad Uher,et al.  High figure of merit and thermoelectric properties of Bi-doped Mg2Si0.4Sn0.6 solid solutions , 2013 .

[26]  Qingjie Zhang,et al.  Thermoelectric Properties of Skutterudites Co4−xNixSb11.9−yTeySe0.1 , 2014, Journal of Electronic Materials.

[27]  R. Donelson,et al.  Enhancement of high temperature thermoelectric performance in Bi, Fe co-doped layered oxide-based material Ca3Co4O9+δ , 2014 .

[28]  P. Li,et al.  Analysis of Thermal Power Generation Capacity for a Skutterudite-Based Thermoelectric Functional Structure , 2017, Journal of Electronic Materials.

[29]  S. Trolier-McKinstry,et al.  SrxBa1−xNb2O6−δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor , 2010 .

[30]  H. Oersted Notiz von neuen electrisch - magnetischen Versuchen des Herrn Seebeck in Berlin , 2006 .

[31]  D. Vashaee,et al.  Phonon dynamics in type-VIII silicon clathrates: Beyond the rattler concept , 2017 .

[32]  G. J. Snyder,et al.  Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device , 2017 .

[33]  Xinbing Zhao,et al.  Lattice thermal conductivity and spectral phonon scattering in FeVSb-based half-Heusler compounds , 2013 .

[34]  V. Ozoliņš,et al.  Lone pair electrons minimize lattice thermal conductivity , 2013 .

[35]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[36]  M. Schmidt,et al.  Atomic interactions in the p-type clathrate I Ba8Au5.3Ge40.7. , 2011, Inorganic Chemistry.

[37]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[38]  J. Honig,et al.  Thermoelectric and Thermomagnetic Effects and Applications , 1967 .

[39]  L. N. Kholodkovskaya,et al.  New layered compounds with the general composition (MO) (CuSe), where M = Bi, Nd, Gd, Dy, and BiOCuS : syntheses and crystal structure , 1994 .

[40]  H. Schäfer,et al.  Ca3AlSb3 und Ca5Al2Bi6, zwei neue Zintlphasen mit kettenförmigen Anionen / New Zintl Phases with Chain Anions: On Ca3AlSb3 and Ca5Al2Bi6 , 1984 .

[41]  W. Xie,et al.  The preparation and thermoelectric properties of Ti0.5Zr0.25Hf0.25Co1−xNixSb half-Heusler compounds , 2008 .

[42]  H. Katz,et al.  Easily Synthesized Naphthalene Tetracarboxylic Diimide Semiconductors with High Electron Mobility in Air , 2008 .

[43]  Han Li,et al.  High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase , 2009 .

[44]  Claudia Felser,et al.  Simple rules for the understanding of Heusler compounds , 2011 .

[45]  G. J. Snyder,et al.  Thermoelectric properties of the Yb9Mn4.2−xZnxSb9 solid solutions , 2014 .

[46]  Jeffrey L. Blackburn,et al.  Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties , 2016, Nature Energy.

[47]  Hong Wang,et al.  Simultaneously improving electrical conductivity and thermopower of polyaniline composites by utilizing carbon nanotubes as high mobility conduits. , 2015, ACS applied materials & interfaces.

[48]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[49]  Qingjie Zhang,et al.  Synthesis and high temperature transport properties of Te-doped skutterudite compounds , 2012, Journal of Materials Science: Materials in Electronics.

[50]  Y. Gogotsi,et al.  Temperature dependence of silicon hardness: Experimental evidence of phase transformations , 2008 .

[51]  Ling Chen,et al.  Thermoelectric properties of Eu(Zn(1-x)Cd(x))2Sb2. , 2010, Dalton transactions.

[52]  D. Morelli,et al.  Better thermoelectrics through glass-like crystals. , 2015, Nature materials.

[53]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[54]  H. Kaibe,et al.  Doping Effects on Thermoelectric Properties of Higher Manganese Silicides (HMSs, MnSi1.74) and Characterization of Thermoelectric Generating Module using p-Type (Al, Ge and Mo)-doped HMSs and n-Type Mg2Si0.4Sn0.6 Legs , 2005 .

[55]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[56]  Xiangxin Guo,et al.  Synthesis and properties of CaCd2Sb2 and EuCd2Sb2 , 2010 .

[57]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[58]  Luis Fonseca,et al.  Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices , 2012 .

[59]  Zhenan Bao,et al.  Role of Polymer Structure on the Conductivity of N‐Doped Polymers , 2016 .

[60]  Y. Nishino,et al.  Direct observation of the electronic structure in thermoelectric half-Heusler alloys Zr1−xMxNiSn (M = Y and Nb) , 2015 .

[61]  Y. Chalopin,et al.  Modulated SiC nanowires: Molecular dynamics study of their thermal properties , 2013 .

[62]  Yamanaka,et al.  Superconductivity in the silicon clathrate compound (Na,Ba)xSi46. , 1995, Physical review letters.

[63]  H. Makiyama,et al.  Thermoelectric high power generating module made by n-Ba8Al xSi46-x clathrate , 2008 .

[64]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[65]  Chude Feng,et al.  Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb , 2007 .

[66]  Claudia Felser,et al.  Enhanced thermoelectric performance in the p-type half-Heusler (Ti/Zr/Hf)CoSb0.8Sn0.2 system via phase separation. , 2014, Physical chemistry chemical physics : PCCP.

[67]  X. Jia,et al.  The thermoelectric properties of BaxIn0.2−x Co4Sb11.5Te0.5 synthesized at different pressure , 2017 .

[68]  Gian-Marco Rignanese,et al.  An Unlikely Route to Low Lattice Thermal Conductivity: Small Atoms in a Simple Layered Structure , 2018, Joule.

[69]  Ed de Jong,et al.  Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. , 2013, Chemical reviews.

[70]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[71]  G. J. Snyder,et al.  Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery , 2011 .

[72]  Cheng Chang,et al.  Multiple Converged Conduction Bands in K2Bi8Se13: A Promising Thermoelectric Material with Extremely Low Thermal Conductivity. , 2016, Journal of the American Chemical Society.

[73]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[74]  H. Borrmann,et al.  Direct measurement of individual phonon lifetimes in the clathrate compound Ba7.81Ge40.67Au5.33 , 2017, Nature Communications.

[75]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[76]  Taeghwan Hyeon,et al.  Enhancing p-Type Thermoelectric Performances of Polycrystalline SnSe via Tuning Phase Transition Temperature. , 2017, Journal of the American Chemical Society.

[77]  Dennis L. Meadows,et al.  Limits to growth : the 30-year update , 2004 .

[78]  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[79]  Melville S. Green,et al.  Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids , 1954 .

[80]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[81]  J. Hummelen,et al.  N‐Type Organic Thermoelectrics: Improved Power Factor by Tailoring Host–Dopant Miscibility , 2017, Advanced materials.

[82]  G. J. Snyder,et al.  Thermoelectric properties of p-type polycrystalline SnSe doped with Ag , 2014 .

[83]  G. J. Snyder,et al.  High temperature thermoelectric efficiency in Ba8Ga16Ge30 , 2008 .

[84]  Donald T. Morelli,et al.  Transport properties of pure and doped M NiSn ( M =Zr, Hf) , 1999 .

[85]  Kevin C. See,et al.  Effect of Interfacial Properties on Polymer–Nanocrystal Thermoelectric Transport , 2013, Advanced materials.

[86]  A. Matthiessen,et al.  IV. On the influence of temperature on the electric conducting-power of alloys , 1864, Philosophical Transactions of the Royal Society of London.

[87]  Anubhav Jain,et al.  Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening , 2015 .

[88]  C. Goldmann,et al.  Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .

[89]  G. J. Snyder,et al.  Effect of Ca Doping on the Thermoelectric Performance of Yb14MnSb11 , 2010 .

[90]  Mark S. Lundstrom,et al.  Computational study of energy filtering effects in one-dimensional composite nano-structures , 2012 .

[91]  Jeffrey L. Blackburn,et al.  Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films , 2017 .

[92]  Supriyo Datta,et al.  Influence of Dimensionality on Thermoelectric Device Performance , 2008, 0811.3632.

[93]  D. Carroll,et al.  Spray doping method to create a low-profile high-density carbon nanotube thermoelectric generator , 2016 .

[94]  Lord Rayleigh F.R.S. XLIII. On the thermodynamic efficiency of the thermopile , 1885 .

[95]  E. Toberer,et al.  Thermoelectric Performance and Defect Chemistry in n-Type Zintl KGaSb4 , 2017 .

[96]  Choongho Yu,et al.  Air-stable fabric thermoelectric modules made of N- and P-type carbon nanotubes , 2012 .

[97]  Tiago F. T. Cerqueira,et al.  Prediction and Synthesis of a Non-Zintl Silicon Clathrate , 2016 .

[98]  C. Felser,et al.  Long-Term Stability of (Ti/Zr/Hf)CoSb1−xSnx Thermoelectric p-Type Half-Heusler Compounds Upon Thermal Cycling , 2015 .

[99]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[100]  H. Takizawa,et al.  Thermoelectric properties of Sn-filled skutterudites , 2000 .

[101]  G. Bazan,et al.  Side-chain effects on the conductivity, morphology, and thermoelectric properties of self-doped narrow-band-gap conjugated polyelectrolytes. , 2014, Journal of the American Chemical Society.

[102]  G. J. Snyder,et al.  Lead-free tin chalcogenide thermoelectric materials , 2016 .

[103]  Shinsuke Yamanaka,et al.  High-Thermoelectric Figure of Merit Realized in p-Type Half-Heusler Compounds: ZrCoSnxSb1-x , 2007 .

[104]  K. Yubuta,et al.  Modulated crystal structure of chimney-ladder higher manganese silicides MnSi γ (γ∼1.74) , 2008 .

[105]  N. Neophytou,et al.  Enhancement of the power factor in two‐phase silicon–boron nanocrystalline alloys , 2014 .

[106]  G. J. Snyder,et al.  High Thermoelectric Performance in Non‐Toxic Earth‐Abundant Copper Sulfide , 2014, Advanced materials.

[107]  D. Narducci,et al.  Silicon de novo: energy filtering and enhanced thermoelectric performances of nanocrystalline silicon and silicon alloys , 2015 .

[108]  Yue Chen,et al.  Integrating Band Structure Engineering with All‐Scale Hierarchical Structuring for High Thermoelectric Performance in PbTe System , 2017 .

[109]  Jane E. Cornett,et al.  Thermoelectric figure of merit calculations for semiconducting nanowires , 2011 .

[110]  Z. Bao,et al.  Effective Solution‐ and Vacuum‐Processed n‐Doping by Dimers of Benzimidazoline Radicals , 2014, Advanced materials.

[111]  F. Fauth,et al.  Low thermal conductivity in La-filled cobalt antimonide skutterudites with an inhomogeneous filling factor prepared under high-pressure conditions , 2018, 1803.07331.

[112]  Hyun-Sik Kim,et al.  High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control , 2017 .

[113]  B. Iversen,et al.  Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands , 2017, Nature Communications.

[114]  R. Kroon,et al.  All-Organic Textile Thermoelectrics with Carbon-Nanotube-Coated n-Type Yarns , 2018, ACS applied energy materials.

[115]  J. Xie,et al.  Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials , 2012 .

[116]  Ulrich Burkhardt,et al.  Synthesis and high thermoelectric efficiency of Zintl phase YbCd2−xZnxSb2 , 2009 .

[117]  H. Scherrer,et al.  Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations , 2004 .

[118]  T. Michinobu,et al.  Naphthodithiophenediimide–Benzobisthiadiazole-Based Polymers: Versatile n-Type Materials for Field-Effect Transistors and Thermoelectric Devices , 2017 .

[119]  B. C. Blanke,et al.  NUCLEAR BATTERY-THERMOCOUPLE TYPE SUMMARY REPORT , 1960 .

[120]  Il-ho Kim,et al.  Thermoelectric properties of p-type partially double-filled (Pr1−zNdz)yFe4−xCoxSb12 skutterudites , 2016 .

[121]  Y. Maniwa,et al.  Fabrication of thermoelectric devices using precisely Fermi level-tuned semiconducting single-wall carbon nanotubes , 2015 .

[122]  T. Kawai,et al.  Water-Processable, Air-Stable Organic Nanoparticle-Carbon Nanotube Nanocomposites Exhibiting n-Type Thermoelectric Properties. , 2017, Small.

[123]  George S. Nolas,et al.  Inorganic clathrate-II materials of group 14: synthetic routes and physical properties , 2008 .

[124]  Heng Wang,et al.  Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe , 2012, Proceedings of the National Academy of Sciences.

[125]  H. Ozaki,et al.  Single crystal growth of (LaO)CuS , 1997 .

[126]  M. Lundstrom,et al.  Nonequilibrium Green's Function Treatment of Phonon Scattering in Carbon-Nanotube Transistors , 2007, IEEE Transactions on Electron Devices.

[127]  Nelson E. Coates,et al.  Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. , 2013, Physical chemistry chemical physics : PCCP.

[128]  Gang Chen,et al.  Recent progress and future challenges on thermoelectric Zintl materials , 2017 .

[129]  Donald T. Morelli,et al.  Low temperature properties of the filled skutterudite CeFe4Sb12 , 1995 .

[130]  G. J. Snyder,et al.  Rapid Microwave Preparation of Thermoelectric TiNiSn and TiCoSb Half-Heusler Compounds , 2012 .

[131]  D. J. Bergman,et al.  Thermoelectric properties of a composite medium , 1991 .

[132]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[133]  Kenneth E. Goodson,et al.  Phonon scattering in silicon films with thickness of order 100 nm , 1999 .

[134]  Jinfeng Dong,et al.  Significant Enhancement of the Thermoelectric Performance of Higher Manganese Silicide by Incorporating MnTe Nanophase Derived from Te Nanowire , 2017 .

[135]  M. Chabinyc,et al.  Morphology controls the thermoelectric power factor of a doped semiconducting polymer , 2017, Science Advances.

[136]  G. J. Snyder,et al.  High-Temperature Transport Properties of the Zintl Phases Yb11GaSb9 and Yb11InSb9† , 2010 .

[137]  H. Fukuoka,et al.  High-Pressure Synthesis, Structure, and Electrical Property of Iodine-Filled Skutterudite I0.9Rh4Sb12—First Anion-Filled Skutterudite , 2010 .

[138]  G. J. Snyder,et al.  Phonon engineering through crystal chemistry , 2011 .

[139]  Y. Miyazaki,et al.  Fabrication of iodine-doped pentacene thin films for organic thermoelectric devices , 2011 .

[140]  Bo Xu,et al.  High Pressure Synthesis of p-Type CeyFe4−xCoxSb12 Skutterudites , 2016, Materials.

[141]  T. Takabatake,et al.  Thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 doped with Cu , 2012 .

[142]  Hans Kosina,et al.  Large thermoelectric power factor in p-type Si (110)/[110] ultra-thin-layers compared to differently oriented channels , 2012, 1207.6801.

[143]  Xinbing Zhao,et al.  Improved thermoelectric performance in the Zintl phase compounds YbZn2−xMnxSb2 via isoelectronic substitution in the anionic framework , 2008 .

[144]  R. Opila,et al.  Promising thermoelectric properties of commercial PEDOT:PSS materials and their bi2Te3 powder composites. , 2010, ACS applied materials & interfaces.

[145]  Y. Kimura,et al.  Thermoelectric Properties of Directionally Solidified Half-Heusler (M0.5a,M0.5b)NiSn (Ma, Mb = Hf, Zr, Ti) Alloys , 2009 .

[146]  Mehmet C. Öztürk,et al.  Thermoelectric silicides: A review , 2017 .

[147]  Y. Grin,et al.  Zintl phase Yb1-xCaxCd2Sb2 with tunable thermoelectric properties induced by cation substitution , 2010 .

[148]  C. Uher,et al.  Thermoelectric properties of Bi2O2Se , 2010 .

[149]  Ian E. Jacobs,et al.  Controlling Molecular Doping in Organic Semiconductors , 2017, Advanced materials.

[150]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[151]  H. Kosina,et al.  The influence of non-idealities on the thermoelectric power factor of nanostructured superlattices , 2015, 1512.04606.

[152]  Tiejun Zhu,et al.  Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1 , 2015 .

[153]  Q. Lu,et al.  Effects of double filling of La and Ce on thermoelectric properties of CemLanFe1.0Co3.0Sb12 compounds by spark plasma sintering , 2005 .

[154]  G. J. Snyder,et al.  Yb14MnSb11: New High Efficiency Thermoelectric Material for Power Generation , 2006 .

[155]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[156]  H. Katz,et al.  Conductivity and power factor enhancement of n-type semiconducting polymers using sodium silica gel dopant , 2017 .

[157]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[158]  A. Freeman,et al.  First-principles electronic structure and its relation to thermoelectric properties of Bi2Te3 , 2001 .

[159]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[160]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[161]  M. Leclerc,et al.  Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives , 2009 .

[162]  Di Wu,et al.  Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering , 2017, Advanced materials.

[163]  Feliciano Giustino,et al.  EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions , 2016, Comput. Phys. Commun..

[164]  V. Zaitsev,et al.  High Effective Thermoelectrics Based on the Mg2Si-Mg2Sn Solid Solution , 2011 .

[165]  Zhiwei Zhou,et al.  Enhancement of thermoelectric properties of Yb-filled skutterudites by an Ni-Induced “core–shell” structure , 2015 .

[166]  J. Fleurial,et al.  Nonstoichiometry in the Zintl Phase Yb1−δZn2Sb2 as a Route to Thermoelectric Optimization , 2014 .

[167]  M. Beekman,et al.  High-temperature thermal conductivity of thermoelectric clathrates , 2017 .

[168]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[169]  Jorge O. Sofo,et al.  Transport coefficients from first-principles calculations , 2003 .

[170]  Limin Wang,et al.  Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method , 2014 .

[171]  Y. Liu,et al.  Synthesis and transport property of Cu(1.8)S as a promising thermoelectric compound. , 2011, Chemical communications.

[172]  W. Tremel,et al.  A chemists view: Metal oxides with adaptive structures for thermoelectric applications , 2016 .

[173]  E. Bauer,et al.  (V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT , 2017 .

[174]  Li-Min Wang,et al.  Intensive suppression of thermal conductivity in Nd0.6Fe2Co2Sb12-xGex through spontaneous precipitates , 2013 .

[175]  A. Cantarero,et al.  Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction , 2014 .

[176]  Ryan Maloney,et al.  Conversion efficiency of skutterudite-based thermoelectric modules. , 2014, Physical chemistry chemical physics : PCCP.

[177]  L. Stil’bans,et al.  Semiconducting Lead Chalcogenides , 1970 .

[178]  G. J. Snyder,et al.  Thermoelectric efficiency and compatibility. , 2003, Physical review letters.

[179]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[180]  S. Sakurada,et al.  Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds , 2005 .

[181]  Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf): A first-principles study. , 1994, Physical review. B, Condensed matter.

[182]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[183]  T. Itoh,et al.  Synthesis of Thermoelectric Manganese Silicide by Mechanical Alloying and Pulse Discharge Sintering , 2009 .

[184]  Y. Maniwa,et al.  Tuning of the thermoelectric properties of one-dimensional material networks by electric double layer techniques using ionic liquids. , 2014, Nano letters.

[185]  Qingjie Zhang,et al.  Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex (x = 0.125–0.20) with in Situ Nanostructure , 2011 .

[186]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[187]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[188]  Christian Müller,et al.  Thermoelectric plastics: from design to synthesis, processing and structure–property relationships , 2016, Chemical Society reviews.

[189]  C. M. Thrush,et al.  Thermoelectric power of bismuth nanocomposites. , 2002, Physical review letters.

[190]  V. Moshchalkov,et al.  Narrow band in the intermetallic compounds MNiSn (M=Ti, Zr, Hf) , 1990 .

[191]  M. Kanatzidis,et al.  Role of sodium doping in lead chalcogenide thermoelectrics. , 2013, Journal of the American Chemical Society.

[192]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[193]  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[194]  Jingfeng Li,et al.  Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity , 2010 .

[195]  William A. Goddard,et al.  Silicon nanowires as efficient thermoelectric materials , 2008, Nature.

[196]  A. Sorrentino,et al.  Photoinduced p‐ to n‐type Switching in Thermoelectric Polymer‐Carbon Nanotube Composites , 2016, Advanced materials.

[197]  Liyan Yu,et al.  A Solution‐Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics , 2016, Advanced science.

[198]  D. Lacroix,et al.  Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.

[199]  Zachary Fisk,et al.  Growth of single crystals from metallic fluxes , 1992 .

[200]  Y. Lan,et al.  Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1−xCaxMg2Bi2 by band engineering and strain fluctuation , 2016, Proceedings of the National Academy of Sciences.

[201]  D. Vashaee,et al.  Comparison of thermoelectric properties of nanostructured Mg2Si, FeSi2, SiGe, and nanocomposites of SiGe–Mg2Si, SiGe–FeSi2 , 2016 .

[202]  Zhifeng Ren,et al.  Recent progress of half-Heusler for moderate temperature thermoelectric applications , 2013 .

[203]  Mika Prunnila,et al.  Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering. , 2015, ACS nano.

[204]  G. J. Snyder,et al.  Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators , 2004 .

[205]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[206]  G. J. Snyder,et al.  High thermoelectric figure of merit in heavy hole dominated PbTe , 2011 .

[207]  T. Okuda,et al.  Large thermoelectric response of metallic perovskites: Sr 1 − x La x TiO 3 ( 0 x 0 . 1 ) , 2001 .

[208]  D. Cahill,et al.  Inorganic Crystals with Glass‐Like and Ultralow Thermal Conductivities † , 2017 .

[209]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[210]  C. Uher,et al.  Rapid synthesis of high thermoelectric performance higher manganese silicide with in-situ formed nano-phase of MnSi , 2011 .

[211]  D. Broido,et al.  Phonon thermal transport inBi2Te3from first principles , 2014 .

[212]  D. R. Strachan,et al.  Increased power factors of organic–inorganic nanocomposite thermoelectric materials and the role of energy filtering , 2017 .

[213]  T. Geballe,et al.  Seebeck Effect in Silicon , 1955 .

[214]  E. Artacho,et al.  Tailoring band gap and hardness by intercalation: an ab initio Study of I(8)@Si-46 and related doped clathrates. , 2001, Physical review letters.

[215]  G. Dennler,et al.  Are Binary Copper Sulfides/Selenides Really New and Promising Thermoelectric Materials? , 2014 .

[216]  Frank E. Osterloh,et al.  Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I Clathrates: A8Ga8Si38 (A = K, Rb, Cs) and K8Al8Si38 , 2015 .

[217]  Tiejun Zhu,et al.  Enhancing the Figure of Merit of Heavy‐Band Thermoelectric Materials Through Hierarchical Phonon Scattering , 2016, Advanced science.

[218]  G. Lanzani,et al.  Thermoelectric Properties of Highly Conductive Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate Printed Thin Films. , 2017, ACS applied materials & interfaces.

[219]  C. Felser,et al.  Thermomagnetic Properties Improved by Self‐Organized Flower‐Like Phase Separation of Ferromagnetic Co2Dy0.5Mn0.5Sn , 2012 .

[220]  G. Ottaviani,et al.  Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors , 2012 .

[221]  G. J. Snyder,et al.  Enhanced thermoelectric performance in rare-earth filled-skutterudites , 2016 .

[222]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[223]  B. Balke,et al.  Niobium substitution in Zr0.5Hf0.5NiSn based Heusler compounds for high power factors , 2011 .

[224]  G. Bazan,et al.  Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors† †Electronic supplementary information (ESI) available: Materials and experimental methods, details of characterization experiments (NMR, EPR, XPS, UV/VIS/NIR, FTIR). See DOI: 10.1039/c5sc04217h , 2015, Chemical science.

[225]  Philip S. Casey,et al.  Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite , 2012 .

[226]  S. Yamanaka,et al.  Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material. , 2014, Nanoscale.

[227]  H. Anno,et al.  Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba8GaxSi46−x (nominal x=14–18) clathrates prepared by combining arc melting and spark plasma sintering methods , 2012 .

[228]  G. Fecher,et al.  Electronic structure and transport properties of the Heusler compound Co2TiAl , 2009 .

[229]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[230]  R. Gruehn,et al.  Zur Präparation und Struktur gemischtvalenter Niob-Wolframoxide der Zusammensetzung (Nb,W)17O47 , 1995 .

[231]  C. Uher,et al.  Band structure engineering in highly degenerate tetrahedrites through isovalent doping , 2016 .

[232]  S. Dou,et al.  Thermoelectric Enhancement of Different Kinds of Metal Chalcogenides , 2016 .

[233]  Qingshuo Wei,et al.  Electrical conduction and thermoelectric properties of tetrathiafulvalene-tetracyanoquinodimethane cast films prepared with N,N-dimethylacetamide , 2017 .

[234]  M. Mikami,et al.  Thermoelectric Properties of Nanograined ZnO , 2010 .

[235]  Rachel A. Segalman,et al.  Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-type carbon nanotube composites for flexible thermoelectrics , 2015 .

[236]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[237]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[238]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[239]  Maria Telkes,et al.  The Efficiency of Thermoelectric Generators. I. , 1947 .

[240]  T. Goto,et al.  Synthesis of YbyCo4Sb12∕Yb2O3 composites and their thermoelectric properties , 2006 .

[241]  Zheng Yuan,et al.  A planar micro thermoelectric generator with high thermal resistance , 2015 .

[242]  K. Goodson,et al.  Material and manufacturing cost considerations for thermoelectrics , 2014 .

[243]  Joseph J. Bozell,et al.  Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited , 2010 .

[244]  Giulia Galli,et al.  Atomistic simulations of heat transport in silicon nanowires. , 2009, Physical review letters.

[245]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS , 2014 .

[246]  G. J. Snyder,et al.  A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization , 2018, Applied Physics Reviews.

[247]  R. Ribeiro,et al.  Single crystal flux growths of thermoelectric materials , 2012 .

[248]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[249]  K. Hata,et al.  Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants , 2013, Scientific Reports.

[250]  Q. Lu,et al.  In situ synthesis and thermoelectric properties of (Fe/Ni)xCo4−xSb12 compounds by SPS , 2008 .

[251]  Qingjie Zhang,et al.  Eco-friendly high-performance silicide thermoelectric materials , 2017 .

[252]  H. Schäfer On the Problem of Polar Intermetallic Compounds: The Stimulation of E. Zintl's Work for the Modern Chemistry of Intermetallics , 1985 .

[253]  Lianjun Wang,et al.  Realizing high-performance thermoelectric power generation through grain boundary engineering of skutterudite-based nanocomposites , 2017 .

[254]  G. J. Snyder,et al.  Thermoelectric properties of Zn-doped Ca3AlSb3 , 2012 .

[255]  V. Ozoliņš,et al.  Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc , 2015 .

[256]  Ling Ti Kong,et al.  Phonon dispersion measured directly from molecular dynamics simulations , 2011, Comput. Phys. Commun..

[257]  V. Khovaylo,et al.  Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry , 2017 .

[258]  Wang,et al.  Electronic transport properties of KxC70 thin films. II. , 1993, Physical review. B, Condensed matter.

[259]  M. Martín-González,et al.  Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor , 2013 .

[260]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[261]  M. Dresselhaus,et al.  Modeling study of thermoelectric SiGe nanocomposites , 2009 .

[262]  N. Zhang,et al.  Ultrahigh-Power-Factor Carbon Nanotubes and an Ingenious Strategy for Thermoelectric Performance Evaluation. , 2016, Small.

[263]  G. J. Snyder,et al.  Defect-controlled electronic properties in AZn₂Sb₂ Zintl phases. , 2014, Angewandte Chemie.

[264]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[265]  A. Majumdar,et al.  Quantifying surface roughness effects on phonon transport in silicon nanowires. , 2012, Nano letters.

[266]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical Review B (Condensed Matter).

[267]  Marco Piccolino,et al.  Animal electricity and the birth of electrophysiology: the legacy of Luigi Galvani , 1998, Brain Research Bulletin.

[268]  C. Cros,et al.  Sur une nouvelle famille de clathrates minéraux isotypes des hydrates de gaz et de liquides. Interprétation des résultats obtenus , 1970 .

[269]  M. Kanatzidis,et al.  SnSe: a remarkable new thermoelectric material , 2016 .

[270]  J. Fleurial,et al.  Glass-like lattice thermal conductivity and high thermoelectric efficiency in Yb9Mn4.2Sb9 , 2014 .

[271]  S. Kauzlarich,et al.  Structure and Ferromagnetism of the Rare-Earth Zintl Compounds: Yb14MnSb11 and Yb14MnBi11 , 1998 .

[272]  N. Neophytou,et al.  Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications , 2016, Scientific Reports.

[273]  S. Kauzlarich,et al.  Earth Abundant Element Type I Clathrate Phases , 2016, Materials.

[274]  G. J. Snyder,et al.  High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb) , 2011 .

[275]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[276]  Heng Wang,et al.  Lead telluride alloy thermoelectrics , 2011 .

[277]  X. Crispin,et al.  Towards polymer-based organic thermoelectric generators , 2012 .

[278]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[279]  Xianli Su,et al.  Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. , 2011, Journal of the American Chemical Society.

[280]  Daoben Zhu,et al.  Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. , 2015, Journal of the American Chemical Society.

[281]  C. Uher,et al.  Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals , 2016 .

[282]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[283]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[284]  Jongwoo Lim,et al.  Ballistic phonon transport in holey silicon. , 2015, Nano letters.

[285]  G. A. Slack,et al.  Design Concepts for Improved Thermoelectric Materials , 1997 .

[286]  W. Wang,et al.  ZT > 0.1 Electron‐Carrying Polymer Thermoelectric Composites with In Situ SnCl2 Microstructure Growth , 2015, Advanced science.

[287]  W. Tremel,et al.  Tetragonal tungsten bronzes Nb8−xW9+xO47−δ: optimization strategies and transport properties of a new n-type thermoelectric oxide , 2015 .

[288]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[289]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[290]  Xinfeng Tang,et al.  Effects of Ga content on thermoelectric properties of P-type Ba8Ga16+xZn3Ge27−x type-I clathrates , 2009 .

[291]  Xin Wang,et al.  Silicon nanowires for advanced energy conversion and storage , 2013 .

[292]  Mark S. Lundstrom,et al.  Thermal conductivity of bulk and thin-film silicon: A Landauer approach , 2012 .

[293]  H. Takizawa,et al.  Atom insertion into the CoSb3 skutterudite host lattice under high pressure , 1999 .

[294]  M. Chabinyc,et al.  Anisotropies and the thermoelectric properties of semiconducting polymers , 2017 .

[295]  I. B. Cadoff,et al.  Thermoelectric materials and devices , 1960 .

[296]  D. Morelli,et al.  Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. , 2008, Physical review letters.

[297]  D. Emin,et al.  Thermoelectric properties of conducting polymers : The case of poly(3-hexylthiophene) , 2010 .

[298]  K. Bartholomé,et al.  Thermoelectric Modules Based on Half-Heusler Materials Produced in Large Quantities , 2014, Journal of Electronic Materials.

[299]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[300]  Liyan Yu,et al.  Polar Side Chains Enhance Processability, Electrical Conductivity, and Thermal Stability of a Molecularly p‐Doped Polythiophene , 2017, Advances in Materials.

[301]  High thermoelectric performance of the distorted bismuth(110) layer. , 2015, Physical chemistry chemical physics : PCCP.

[302]  New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X = Ge, Sn) reaching ZT > 1.3 , 2015, 1702.04498.

[303]  Yonggao Y. Yan,et al.  The effects of In isoelectronic substitution for Ga on the thermoelectric properties of Sr8Ga16−xInxGe30 type-I clathrates , 2008 .

[304]  M. Kanatzidis Advances in thermoelectrics: From single phases to hierarchical nanostructures and back , 2015 .

[305]  P. Rogl,et al.  Skutterudites, a most promising group of thermoelectric materials , 2017 .

[306]  G. J. Snyder,et al.  Achieving zT > 1 in Inexpensive Zintl Phase Ca9Zn4+xSb9 by Phase Boundary Mapping , 2017 .

[307]  N. Neophytou,et al.  Paradoxical Enhancement of the Power Factor of Polycrystalline Silicon as a Result of the Formation of Nanovoids , 2014, Journal of Electronic Materials.

[308]  Hui Wang,et al.  Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. , 2013, Physical chemistry chemical physics : PCCP.

[309]  D R Bowler,et al.  Calculations for millions of atoms with density functional theory: linear scaling shows its potential , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[310]  R. Stratton,et al.  The Thermoelectric Figure of Merit and its Relation to Thermoelectric Generators , 1959 .

[311]  A. Shakouri Recent Developments in Semiconductor Thermoelectric Physics and Materials , 2011 .

[312]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[313]  G. J. Snyder,et al.  Crystal structure, characterization and thermoelectric properties of the type-I clathrate Ba8-ySryAl14Si32 (0.6≤y≤1.3) prepared by aluminum flux , 2011 .

[314]  Hui Wang,et al.  Thermoelectric properties of copper selenide with ordered selenium layer and disordered copper layer , 2012 .

[315]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[316]  A. Majumdar,et al.  Simultaneous Increase in Seebeck Coefficient and Conductivity in a Doped Poly(alkylthiophene) Blend with Defined Density of States , 2010 .

[317]  J. Fleurial,et al.  Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3 , 1996 .

[318]  G. J. Snyder,et al.  Thermoelectric properties of Zn-doped Ca5In2Sb6. , 2013, Dalton transactions.

[319]  Anvar A. Zakhidov,et al.  Woven‐Yarn Thermoelectric Textiles , 2016, Advanced materials.

[320]  T. Myers,et al.  Elastic and mechanical properties of intrinsic and doped PbSe and PbTe studied by first-principles , 2014 .

[321]  J. Hejtmánek,et al.  Influence of Ni on the thermoelectric properties of the partially filled calcium skutterudites Ca y Co 4 − x Ni x Sb 12 , 2007 .

[322]  Rainer Pöttgen,et al.  The metal flux: a preparative tool for the exploration of intermetallic compounds. , 2005, Angewandte Chemie.

[323]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[324]  Qingjie Zhang,et al.  High temperature thermoelectric transport properties of p-type Ba8Ga16AlxGe30−x type-I clathrates with high performance , 2008 .

[325]  M. Chabinyc,et al.  Impact of the Doping Method on Conductivity and Thermopower in Semiconducting Polythiophenes , 2015 .

[326]  Zhaojun Li,et al.  High Seebeck Coefficient and Power Factor in n‐Type Organic Thermoelectrics , 2018 .

[327]  G. Mcvay,et al.  Preparation of hot-pressed silicon-germanium ingots: Part III - vacuum hot pressing☆ , 1974 .

[328]  Lijun Wu,et al.  Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites , 2015, Scientific Reports.

[329]  A. Majumdar,et al.  Fabrication and characterization of a nanowire/polymer-based nanocomposite for a prototype thermoelectric device , 2004, Journal of Microelectromechanical Systems.

[330]  Xianli Su,et al.  High thermoelectric performance of p-BiSbTe compounds prepared by ultra-fast thermally induced reaction , 2017 .

[331]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[332]  David J. Singh,et al.  Chemical bonding, conductive network, and thermoelectric performance of the ternary semiconductors Cu2SnX3(X=Se,S) from first principles , 2012 .

[333]  D. Donadio,et al.  Thermal transport in free-standing silicon membranes: influence of dimensional reduction and surface nanostructures , 2015 .

[334]  K. Tsuchiya,et al.  Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricity , 2017 .

[335]  A unique framework in BaGa2Sb2: a new Zintl phase with large tunnels. , 2001, Inorganic chemistry.

[336]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[337]  Chunlei Dong,et al.  Enhanced thermoelectric performance in barium and indium double-filled skutterudite bulk materials via orbital hybridization induced by indium filler. , 2009, Journal of the American Chemical Society.

[338]  V. Ozoliņš,et al.  Phase Stability, Crystal Structure, and Thermoelectric Properties of Cu12Sb4S13–xSex Solid Solutions , 2016 .

[339]  D. Moses,et al.  Experimental determination of the thermal conductivity of a conducting polymer: Pure and heavily doped polyacetylene , 1984 .

[340]  Magnus Berggren,et al.  Semi-metallic polymers. , 2014, Nature materials.

[341]  E. Lenz Einige Versuche im Gebiete des Galvanismus , 1838 .

[342]  Jun Liu,et al.  Anisotropic Thermal Transport in Thermoelectric Composites of Conjugated Polyelectrolytes/Single-Walled Carbon Nanotubes , 2016 .

[343]  G. J. Snyder,et al.  Thermoelectric transport properties of polycrystalline SnSe alloyed with PbSe , 2017 .

[344]  Zhiting Tian,et al.  Thermoelectric properties of crystalline and amorphous polypyrrole: A computational study , 2017 .

[345]  Hui Wang,et al.  Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2 , 2012 .

[346]  Jing Zhao,et al.  High Thermoelectric Performance in Electron-Doped AgBi3S5 with Ultralow Thermal Conductivity. , 2017, Journal of the American Chemical Society.

[347]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[348]  Vladan Stevanović,et al.  Material descriptors for predicting thermoelectric performance , 2015 .

[349]  B. Balke,et al.  On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials , 2018, Materials.

[350]  G. Magnus Ueber thermoelektrische Ströme , 1851 .

[351]  Zhiwei Chen,et al.  Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence , 2017 .

[352]  M. Kanatzidis,et al.  High thermoelectric figure of merit and improved mechanical properties in melt quenched PbTe–Ge and PbTe–Ge1−xSix eutectic and hypereutectic composites , 2009 .

[353]  Tamura,et al.  Anharmonic decay and the propagation of phonons in an isotopically pure crystal at low temperatures: Application to dark-matter detection. , 1993, Physical review. B, Condensed matter.

[354]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[355]  M. Dresselhaus,et al.  Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites. , 2012, Nano letters.

[356]  M. Toprak,et al.  Synthesis and Characterization of Al-Doped Mg2Si Thermoelectric Materials , 2013, Journal of Electronic Materials.

[357]  R. Saidur,et al.  A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery , 2016 .

[358]  G. Madsen,et al.  “Glass-like” thermal conductivity gradually induced in thermoelectric Sr8Ga16Ge30 clathrate by off-centered guest atoms , 2016 .

[359]  D. Carroll,et al.  Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites , 2014 .

[360]  C. Felser,et al.  Half-Heusler compounds: novel materials for energy and spintronic applications , 2012 .

[361]  G. Lanzani,et al.  Thermoelectric characterization of flexible micro-thermoelectric generators. , 2017, The Review of scientific instruments.

[362]  M. Plissonnier,et al.  "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe. , 2009, Nano letters.

[363]  Heng Wang,et al.  Tuning bands of PbSe for better thermoelectric efficiency , 2014 .

[364]  M. Kanatzidis Chapter 3 The role of solid-state chemistry in the discovery of new thermoelectric materials , 2001 .

[365]  Xiao-jun Wang,et al.  A new type of thermoelectric material, EuZn2Sb2. , 2008, The Journal of chemical physics.

[366]  X. Zhao,et al.  Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions , 2010 .

[367]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[368]  H. Goldsmid,et al.  Introduction to Thermoelectricity , 2016 .

[369]  Daoben Zhu,et al.  Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. , 2017, Journal of the American Chemical Society.

[370]  Miguel Muñoz Rojo,et al.  Thermoelectric Skutterudite/oxide nanocomposites: Effective decoupling of electrical and thermal conductivity by functional interfaces , 2017 .

[371]  Ankita Katre,et al.  Calculating the thermal conductivity of the silicon clathrates using the quasi‐harmonic approximation , 2016 .

[372]  Choongho Yu,et al.  High electrical conductivity and n-type thermopower from double-/single-wall carbon nanotubes by manipulating charge interactions between nanotubes and organic/inorganic nanomaterials , 2011 .

[373]  Yuanhua Lin,et al.  Enhanced Thermoelectric Properties of Pb‐doped BiCuSeO Ceramics , 2013, Advanced materials.

[374]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[375]  M. Riffel,et al.  Thermoelectric generators made of FeSi_2 and HMS: Fabrication and measurement , 1995 .

[376]  Limin Wang,et al.  Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering , 2014 .

[377]  C. Domenicali,et al.  Irreversible Thermodynamics of Thermoelectricity , 1954 .

[378]  Yi-sheng Liu,et al.  Carrier Scattering at Alloy Nanointerfaces Enhances Power Factor in PEDOT:PSS Hybrid Thermoelectrics. , 2016, Nano letters.

[379]  E. Toberer,et al.  Valence band study of thermoelectric Zintl-phase SrZn_2Sb_2 and YbZn_2Sb_2: X-ray photoelectron spectroscopy and density functional theory , 2010 .

[380]  G. Nolas,et al.  Inorganic Clathrates for Thermoelectric Applications , 2014 .

[381]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[382]  N. Hamada,et al.  Electronic structure of the hole-doped delafossite oxides CuCr 1-x Mg x O 2 , 2012, 1211.1829.

[383]  Choongho Yu,et al.  Flexible power fabrics made of carbon nanotubes for harvesting thermoelectricity. , 2014, ACS nano.

[384]  N. P. Ong,et al.  Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 , 2003, Nature.

[385]  C. Kloc,et al.  A New Class of Materials with Promising Thermoelectric Properties: MNiSn (M = Ti, Zr, Hf) , 1997 .

[386]  C. Hawker,et al.  Solubility‐Limited Extrinsic n‐Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications , 2014, Advanced materials.

[387]  Soon-Mok Choi,et al.  Solid-State Synthesis and Thermoelectric Properties of Al-Doped Mg2Si , 2012, Journal of Electronic Materials.

[388]  Taylor D. Sparks,et al.  Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations , 2013 .

[389]  S. T. Picraux,et al.  Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering , 2011 .

[390]  Eric S. Toberer,et al.  Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics , 2017 .

[391]  Sossina M. Haile,et al.  Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1–xZn2Sb2 , 2005 .

[392]  Jingkun Xu,et al.  Effects of solvents on thermoelectric performance of PANi/PEDOT/PSS composite films , 2017, Journal of Polymer Research.

[393]  Jihui Yang,et al.  Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .

[394]  Lianjun Wang,et al.  Preparation of bulk AgNWs/PEDOT:PSS composites: a new model towards high-performance bulk organic thermoelectric materials , 2015 .

[395]  M. Whangbo,et al.  Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides , 1991 .

[396]  Guglielmo Lanzani,et al.  Organic flexible thermoelectric generators: from modeling, a roadmap towards applications , 2017 .

[397]  David J. Singh,et al.  Influence of band structure on the large thermoelectric performance of lanthanum telluride , 2009 .

[398]  W. Tremel,et al.  Thermal stability and enhanced thermoelectric properties of the tetragonal tungsten bronzes Nb8-xW9+xO47 (0 < x < 5) , 2017 .

[399]  O. Delaire,et al.  Properties of single crystalline AZn2Sb2 (A = Ca,Eu,Yb) , 2012, 1202.4004.

[400]  H J Goldsmid,et al.  The performance of bismuth telluride thermojunctions , 1958 .

[401]  David J. Singh,et al.  Electronic fitness function for screening semiconductors as thermoelectric materials , 2017, 1708.04499.

[402]  Choongho Yu,et al.  Thermoelectric behavior of segregated-network polymer nanocomposites. , 2008, Nano letters.

[403]  S. Paschen,et al.  Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba8Ge40+xNi6-x. , 2012, 1211.6618.

[404]  G. J. Snyder,et al.  Enhanced thermoelectric properties of the Zintl phase BaGa2Sb2 via doping with Na or K , 2016 .

[405]  H. Hwang,et al.  Nanostructured thermoelectric cobalt oxide by exfoliation/restacking route , 2012 .

[406]  Cronin B. Vining,et al.  Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys , 1991 .

[407]  V. Nyamori,et al.  Graphene for Thermoelectric Applications: Prospects and Challenges , 2018 .

[408]  Xinbing Zhao,et al.  MICROSTRUCTURE AND THERMOELECTRIC PROPERTIES OF (Zr,Hf)NiSn-BASED HALF-HEUSLER ALLOYS BY MELT SPINNING AND SPARK PLASMA SINTERING , 2010 .

[409]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[410]  A. Assoud,et al.  Thermoelectric Properties of the New Polytelluride Ba3Cu14-δTe12 , 2006 .

[411]  Q. Fernaǹdo,et al.  Tetrathiafulvalene (TTF), tetramethyltetraselenafulvalene (TMTSF), and BIS (ethylenedithio) tetrathiafulvalene (BEDT-TTF) salts of copper halides , 1987 .

[412]  T. Kawai,et al.  Simple Salt‐Coordinated n‐Type Nanocarbon Materials Stable in Air , 2016 .

[413]  Mona Zebarjadi,et al.  Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. , 2012, Nano letters.

[414]  Haijun Wu,et al.  Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides , 2013 .

[415]  B. L. Weeks,et al.  Effect of host-mobility dependent carrier scattering on thermoelectric power factors of polymer composites , 2016 .

[416]  Wen Luo,et al.  Improved Thermoelectric Properties of Al-Doped Higher Manganese Silicide Prepared by a Rapid Solidification Method , 2011 .

[417]  Zhong Bin,et al.  High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se , 2014 .

[418]  C. Müller,et al.  Influence of crystallinity on the thermoelectric power factor of P3HT vapour-doped with F4TCNQ , 2018, RSC advances.

[419]  Structure and properties of single crystalline CaMg2Bi2, EuMg2Bi2, and YbMg2Bi2. , 2011, Inorganic chemistry.

[420]  G. J. Snyder,et al.  Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials , 2013 .

[421]  D. Rowe Thermoelectrics Handbook , 2005 .

[422]  V. Ozoliņš,et al.  High Performance Thermoelectricity in Earth‐Abundant Compounds Based on Natural Mineral Tetrahedrites , 2013 .

[423]  S. Kauzlarich,et al.  Enhanced high-temperature thermoelectric performance of Yb(14-x)Ca(x)MnSb11. , 2012, Inorganic chemistry.

[424]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[425]  Thermal conductivity of silicon nanomeshes: Effects of porosity and roughness , 2014, 1405.7738.

[426]  Kim Lefmann,et al.  Avoided crossing of rattler modes in thermoelectric materials. , 2008, Nature materials.

[427]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[428]  C. Hawker,et al.  Power Factor Enhancement in Solution‐Processed Organic n‐Type Thermoelectrics Through Molecular Design , 2014, Advanced materials.

[429]  Heng Wang,et al.  Temperature dependent band gap in PbX (X = S, Se, Te) , 2013 .

[430]  Y. Nishino New Development of Thermoelectric Materials Based on Heusler Compounds , 2015 .

[431]  Gang Chen,et al.  Recent advances in thermoelectric nanocomposites , 2012 .

[432]  R. Potter,et al.  Enhancing the thermoelectric properties of single and double filled p-type skutterudites synthesized by an up-scaled ball-milling process , 2017 .

[433]  Mark Husband,et al.  Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications , 2014, Journal of Electronic Materials.

[434]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[435]  J. Schilz,et al.  Bulk growth of silicon-germanium solid solutions , 1995 .

[436]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[437]  C. Felser,et al.  Fine tuning of thermoelectric performance in phase-separated half-Heusler compounds , 2015 .

[438]  N. Ohya,et al.  Optimization of thermoelectric properties of type-VIII clathrate Ba8Ga16Sn30 by carrier tuning , 2010 .

[439]  B. Iversen,et al.  Thermoelectric clathrates of type I. , 2010, Dalton transactions.

[440]  Choongho Yu,et al.  Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). , 2010, ACS nano.

[441]  J. Grunlan,et al.  Carbon‐Nanotube‐Based Thermoelectric Materials and Devices , 2018, Advanced materials.

[442]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[443]  R. Asahi,et al.  Materials design and development of functional materials for industry , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[444]  G. J. Snyder,et al.  Chemical Stability of (Ag,Cu)2Se: a Historical Overview , 2013, Journal of Electronic Materials.

[445]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[446]  T. Kawai,et al.  Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes. , 2017, Small.

[447]  Mohamed S. El-Genk,et al.  High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K , 2003 .

[448]  Jiong Yang,et al.  Enhanced thermoelectric performance of dual-element-filled skutterudites BaxCeyCo4Sb12 , 2009 .

[449]  B. Balke,et al.  Phase separation as a key to a thermoelectric high efficiency. , 2013, Physical chemistry chemical physics : PCCP.

[450]  Singh,et al.  Skutterudite antimonides: Quasilinear bands and unusual transport. , 1994, Physical review. B, Condensed matter.

[451]  Q. Shen,et al.  Thermoelectric properties of ZrNiSn-based half-Heusler compounds by solid state reaction method , 2001 .

[452]  M. Kanatzidis,et al.  Panoscopic approach for high-performance Te-doped skutterudite , 2017 .

[453]  T. Çagin,et al.  Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations , 2007 .

[454]  K. Kondoh,et al.  Solid-state synthesis of Mg2Si from Mg-Si mixture powder , 2001 .

[455]  X. Crispin,et al.  Thermoelectric Properties of Solution‐Processed n‐Doped Ladder‐Type Conducting Polymers , 2016, Advanced materials.

[456]  Qingjie Zhang,et al.  Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys , 2009 .

[457]  R. Donelson,et al.  Ga Substitution and Oxygen Diffusion Kinetics in Ca3Co4O9+δ-Based Thermoelectric Oxides , 2013 .

[458]  Haijun Wu,et al.  Remarkable Roles of Cu To Synergistically Optimize Phonon and Carrier Transport in n-Type PbTe-Cu2Te. , 2017, Journal of the American Chemical Society.

[459]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[460]  M. Ohtaki,et al.  High Thermoelectric Performance of Dually Doped ZnO Ceramics , 2009 .

[461]  Haijun Wu,et al.  High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. , 2014, Journal of the American Chemical Society.

[462]  F. Aliev,et al.  Gap at the Fermi level in the intermetallic vacancy system RBiSn(R=Ti,Zr,Hf) , 1989 .

[463]  Di Wu,et al.  Half-Heusler phases and nanocomposites as emerging high-ZT thermoelectric materials , 2011 .

[464]  Wei Lai,et al.  From Bonding Asymmetry to Anharmonic Rattling in Cu12Sb4S13 Tetrahedrites: When Lone‐Pair Electrons Are Not So Lonely , 2015 .

[465]  David J. Singh,et al.  Importance of non-parabolic band effects in the thermoelectric properties of semiconductors , 2013, Scientific Reports.

[466]  V. Vijayakumar,et al.  A Versatile Method to Fabricate Highly In‐Plane Aligned Conducting Polymer Films with Anisotropic Charge Transport and Thermoelectric Properties: The Key Role of Alkyl Side Chain Layers on the Doping Mechanism , 2017 .

[467]  Andrew L. Schmitt,et al.  Higher manganese silicide nanowires of Nowotny chimney ladder phase. , 2008, Journal of the American Chemical Society.

[468]  E. Kioupakis,et al.  Quasiparticle band structures and thermoelectric transport properties of p-type SnSe , 2014, 1406.1218.

[469]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[470]  D. Tang,et al.  Flexible n‐Type High‐Performance Thermoelectric Thin Films of Poly(nickel‐ethylenetetrathiolate) Prepared by an Electrochemical Method , 2016, Advanced materials.

[471]  Xiangyang Huang,et al.  High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy , 2010 .

[472]  A. Waag,et al.  Thermoelectric Properties of High-Doped Silicon from Room Temperature to 900 K , 2013, Journal of Electronic Materials.

[473]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[474]  Xinbing Zhao,et al.  Microstructure and thermoelectric properties of SiGe-added higher manganese silicides , 2010 .

[475]  K. Suekuni,et al.  Enhancement of thermoelectric efficiency in type-VIII clathrate Ba8Ga16Sn30 by Al substitution for Ga , 2010 .

[476]  G. J. Snyder,et al.  Micro- and Macromechanical Properties of Thermoelectric Lead Chalcogenides. , 2017, ACS applied materials & interfaces.

[477]  Di Wu,et al.  Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects , 2017 .

[478]  K. Hradil,et al.  Thermopower enhancement by encapsulating cerium in clathrate cages. , 2013, Nature materials.

[479]  Y. Kawazoe,et al.  Parlinski, Li, and Kawazoe Reply: , 1998 .

[480]  J. Hone,et al.  Observation of Thermopower Oscillations in the Coulomb Blockade Regime in a Semiconducting Carbon Nanotube , 2004 .

[481]  Claudia Felser,et al.  Covalent bonding and the nature of band gaps in some half-Heusler compounds , 2005, cond-mat/0509472.

[482]  G. J. Snyder,et al.  Distinct Impact of Alkali-Ion Doping on Electrical Transport Properties of Thermoelectric p-Type Polycrystalline SnSe. , 2016, Journal of the American Chemical Society.

[483]  H. Katz,et al.  High Conductivity and Electron‐Transfer Validation in an n‐Type Fluoride‐Anion‐Doped Polymer for Thermoelectrics in Air , 2017, Advanced materials.

[484]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[485]  T. Kanno,et al.  Isotropic Conduction Network and Defect Chemistry in Mg3+δSb2‐Based Layered Zintl Compounds with High Thermoelectric Performance , 2016, Advanced materials.

[486]  Junichiro Shiomi,et al.  Enhancement of thermoelectric figure-of-merit at low temperatures by titanium substitution for hafnium in n-type half-Heuslers Hf0.75−xTixZr0.25NiSn0.99Sb0.01 , 2013 .

[487]  Jun Jiang,et al.  Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering , 2005 .

[488]  Alan J. H. McGaughey,et al.  Phonon transport in molecular dynamics simulations: Formulation and thermal conductivity prediction. , 2006 .

[489]  Jun Liu,et al.  Thermal Conductivity and Elastic Constants of PEDOT:PSS with High Electrical Conductivity , 2015 .

[490]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[491]  H. Goldsmid,et al.  Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation , 2014, Materials.

[492]  Q. Hou,et al.  Thermoelectric properties of manganese silicide films , 2005 .

[493]  M. X. Wang,et al.  Photoemission study of the electronic structure of valence band convergent SnSe , 2017, 1804.04357.

[494]  W. Tremel,et al.  Towards higher zT in early transition metal oxides: optimizing the charge carrier concentration of the WO3-x compounds , 2018 .

[495]  O. Sankey,et al.  Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. , 2001, Physical review letters.

[496]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[497]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[498]  G. J. Snyder,et al.  Transport properties of the layered Zintl compound SrZnSb2 , 2009 .

[499]  Bin Hu,et al.  Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials , 2017 .

[500]  G. J. Snyder,et al.  Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence , 2017, Advanced materials.

[501]  V. Giordano,et al.  Understanding lattice thermal conductivity in thermoelectric clathrates: A density functional theory study on binary Si-based type-I clathrates , 2018 .

[502]  Weishu Liu,et al.  Improvement of Thermoelectric Performance of CoSb3-xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb , 2008 .

[503]  G. Fecher,et al.  Seebeck coefficients of half-metallic ferromagnets , 2009, 0911.0553.

[504]  M. Chabinyc,et al.  Increasing the Thermoelectric Power Factor of a Semiconducting Polymer by Doping from the Vapor Phase. , 2016, ACS macro letters.

[505]  Choongho Yu,et al.  Thermally Driven Large N‐Type Voltage Responses from Hybrids of Carbon Nanotubes and Poly(3,4‐ethylenedioxythiophene) with Tetrakis(dimethylamino)ethylene , 2015, Advanced materials.

[506]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[507]  Z. Ren,et al.  Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1−xYbxZn2Sb2, Ca1−xEuxZn2Sb2, and Eu1−xYbxZn2Sb2 by mechanical alloying and hot pressing , 2016 .

[508]  J. Hsu,et al.  Stable n-type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers , 2016 .

[509]  Y. Nishino,et al.  Doping effects on thermoelectric properties of the off-stoichiometric Heusler compounds Fe2−xV1+xAl , 2014 .

[510]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[511]  M. Chi,et al.  On the Design of High‐Efficiency Thermoelectric Clathrates through a Systematic Cross‐Substitution of Framework Elements , 2010 .

[512]  T. Nakayama,et al.  Phonon-glass electron-crystal thermoelectric clathrates : Experiments and theory , 2014, 1402.5756.

[513]  D. Bérardan,et al.  Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials , 2010 .

[514]  M. Kanatzidis,et al.  Electronic structure of K_2Bi_8Se_13 , 2002 .

[515]  J. Ziman Principles of the Theory of Solids , 1965 .

[516]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[517]  Lain‐Jong Li,et al.  Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. , 2015, ACS applied materials & interfaces.

[518]  T. He,et al.  Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2 , 2004, cond-mat/0406570.

[519]  Claudia Felser,et al.  Engineering half-Heusler thermoelectric materials using Zintl chemistry , 2016 .

[520]  Taylor D. Sparks,et al.  High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds , 2016 .

[521]  J. Kasper,et al.  Clathrate Structure of Silicon Na8Si46 and NaxSi136 (x < 11) , 1965, Science.

[522]  Michael A. McGuire,et al.  Phonon density of states and heat capacity of La 3 − x Te 4 , 2009 .

[523]  F. Müller-Plathe A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity , 1997 .

[524]  Daoben Zhu,et al.  Efficient Solution-Processed n-Type Small-Molecule Thermoelectric Materials Achieved by Precisely Regulating Energy Level of Organic Dopants. , 2017, ACS applied materials & interfaces.

[525]  Thermoelectric properties of Yb(x)Eu(1-x)Cd2Sb2. , 2010, The Journal of chemical physics.

[526]  H. Kosina,et al.  Effects of confinement and orientation on the thermoelectric power factor of silicon nanowires , 2011, 1106.2152.

[527]  L. Isett Magnetic susceptibility, electrical resistivity, and thermoelectric power measurements ofbis(tetrathiotetracene)-triiodide , 1978 .

[528]  E. Bauer,et al.  Structural and thermoelectric properties of Ba8Cu5SixGe41−xclathrates , 2013 .

[529]  Xincheng Hu,et al.  Tuning thermoelectric performance by nanostructure evolution of a conducting polymer , 2015 .

[530]  A. Dodabalapur,et al.  A soluble and air-stable organic semiconductor with high electron mobility , 2000, Nature.

[531]  A. Khan,et al.  Solid-State Synthesis and Thermoelectric Properties of Sb-Doped Mg2Si Materials , 2013, Journal of Electronic Materials.

[532]  J. Blackburn,et al.  Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor , 2016 .

[533]  S. N. Ruddlesden,et al.  The compound Sr3Ti2O7 and its structure , 1958 .

[534]  Tiejun Zhu,et al.  Recrystallization induced in situ nanostructures in bulk bismuth antimony tellurides: a simple top down route and improved thermoelectric properties , 2010 .

[535]  J. Garay Current-Activated, Pressure-Assisted Densification of Materials , 2010 .

[536]  G. Bazan,et al.  Bendable n‐Type Metallic Nanocomposites with Large Thermoelectric Power Factor , 2017, Advanced materials.

[537]  V Parsonnet,et al.  The nuclear pacemaker: is renewed interest warranted? , 1990, The American journal of cardiology.

[538]  Jihui Yang,et al.  Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties , 2008 .

[539]  H J Goldsmid,et al.  The use of semiconductors in thermoelectric refrigeration , 1954 .

[540]  A. B. Kaiser,et al.  Thermoelectric power and conductivity of heterogeneous conducting polymers. , 1989, Physical review. B, Condensed matter.

[541]  Han Li,et al.  Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances , 2013, Nanotechnology.

[542]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[543]  S. Dou,et al.  Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. , 2011, Nano letters.

[544]  H. Borrmann,et al.  A clathrate-I phase with Li-Ge framework. , 2012, Chemistry.

[545]  Tiejun Zhu,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature communications.

[546]  C. Adachi,et al.  Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices , 2011 .

[547]  Haritha Sree Yaddanapudi,et al.  Terbium Ion Doping in Ca3Co4O9: A Step towards High-Performance Thermoelectric Materials , 2017, Scientific Reports.

[548]  H. Asada,et al.  Thermoelectric and transport properties of sintered n-type K8Ba16Ga40Sn96 with type-II clathrate structure , 2014 .

[549]  H. Ohta,et al.  High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals , 2005 .

[550]  H. Fjellvåg,et al.  Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide, [CoCa2O3]qCoO2 , 2004 .

[551]  Richard Alan Lesar,et al.  Introduction to Computational Materials Science: Fundamentals to Applications , 2013 .

[552]  Gang Chen,et al.  Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics , 2008 .

[553]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[554]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[555]  A. Zevalkink,et al.  Crystal chemistry and thermoelectric transport of layered AM2X2 compounds , 2018 .

[556]  R. Cava,et al.  Thermoelectric properties of pure and doped FeMSb (M=V,Nb) , 2000 .

[557]  K. Yubuta,et al.  In-doped multifilled n-type skutterudites with ZT = 1.8 , 2015 .

[558]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[559]  Anton Van der Ven,et al.  Phase separation of full-Heusler nanostructures in half-Heusler thermoelectrics and vibrational properties from first-principles calculations , 2015 .

[560]  D. Vashaee,et al.  Prediction of Giant Thermoelectric Power Factor in Type-VIII Clathrate Si46 , 2014, Scientific Reports.

[561]  C. B. Vining An inconvenient truth about thermoelectrics. , 2009, Nature materials.

[562]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[563]  R. Cava,et al.  Large enhancement of the thermopower in NaxCoO2 at high Na doping , 2006, Nature materials.

[564]  G. J. Snyder,et al.  The Zintl Compound Ca5Al2Sb6 for Low‐Cost Thermoelectric Power Generation , 2010 .

[565]  Choongho Yu,et al.  Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. , 2011, ACS nano.

[566]  Bo Xu,et al.  High pressure synthesis of p-type Fe-substituted CoSb3 skutterudites , 2016, Journal of Materials Science: Materials in Electronics.

[567]  Y. Nishino Thermoelectric Properties of the Pseudogap Fe2VAl System , 2004 .

[568]  Y. Gohda,et al.  Impact of rattlers on thermal conductivity of a thermoelectric clathrate: a first-principles study. , 2014, Physical review letters.

[569]  Z. Dashevsky,et al.  High Thermoelectric Figure of Merit and Nanostructuring in Bulk p-type Gex(SnyPb1−y)1−xTe Alloys Following a Spinodal Decomposition Reaction† , 2010 .

[570]  E. Toberer,et al.  Potential for high thermoelectric performance in n-type Zintl compounds: a case study of Ba doped KAlSb4 , 2017 .

[571]  Natalio Mingo,et al.  Thermal conductivity of bulk and nanowire Mg2Si_{x}Sn_{1-x} alloys from first principles , 2012 .

[572]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[573]  G. Madsen,et al.  Ab initio Calculations of Intrinsic Point Defects in ZnSb , 2012 .

[574]  M. Dresselhaus,et al.  Power factor enhancement by modulation doping in bulk nanocomposites. , 2011, Nano letters.

[575]  Takao Kotani,et al.  Quasiparticle self-consistent GW theory. , 2006, Physical review letters.

[576]  Nan Zhang,et al.  High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture , 2017, Nature Communications.

[577]  S. Andersson,et al.  PHASE ANALYSIS STUDIES ON THE TITANIUM-OXYGEN SYSTEM , 1957 .

[578]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[579]  Gang Chen,et al.  Enhanced thermoelectric figure of merit of p-type half-Heuslers. , 2011, Nano letters.

[580]  S. Cho,et al.  Foldable Thermoelectric Materials: Improvement of the Thermoelectric Performance of Directly Spun CNT Webs by Individual Control of Electrical and Thermal Conductivity. , 2016, ACS applied materials & interfaces.

[581]  G. Nolas,et al.  Precursor Routes to Complex Ternary Intermetallics: Single-Crystal and Microcrystalline Preparation of Clathrate-I Na8Al8Si38 from NaSi + NaAlSi. , 2015, Inorganic chemistry.

[582]  Georg Müller,et al.  The Czochralski Method ‐ where we are 90 years after Jan Czochralski’s invention , 2007 .

[583]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[584]  S. Bobev,et al.  Interplay between size and electronic effects in determining the homogeneity range of the A9Zn4+xPn9 and A9Cd4+xPn9 phases (0 < or = x < or = 0.5), A = Ca, Sr, Yb, Eu; Pn = Sb, Bi. , 2007, Journal of the American Chemical Society.

[585]  S. Maekawa,et al.  Thermopower in cobalt oxides , 2000 .

[586]  J. E. Lee,et al.  Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals , 2016, Nature Communications.

[587]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[588]  G. Boiteux,et al.  A representative and comprehensive review of the electrical and thermal properties of polymer composites with carbon nanotube and other nanoparticle fillers , 2017 .

[589]  G. J. Snyder,et al.  High Thermoelectric Efficiency of n‐type PbS , 2013 .

[590]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[591]  Zhiqun Lin,et al.  Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic–inorganic semiconductor interface , 2012 .

[592]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[593]  H. Köhler,et al.  Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect , 1976 .

[594]  R. Gabrielsson,et al.  Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles , 2017, ACS applied materials & interfaces.

[595]  C. Chen,et al.  High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties , 2016 .

[596]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[597]  Z. Ren,et al.  Importance of high power factor in thermoelectric materials for power generation application: A perspective , 2016 .

[598]  G. J. Snyder,et al.  Improved Thermoelectric Properties in Lu-doped Yb14MnSb11 Zintl Compounds , 2012 .

[599]  C. Felser,et al.  Tuning the carrier concentration for thermoelectrical application in the quaternary Heusler compound Co2TiAl(1 − x)Six , 2010 .

[600]  C. Uher,et al.  Recent advances in high-performance bulk thermoelectric materials , 2016 .

[601]  Zihua Wu,et al.  Enhanced thermoelectric figure of merit in nanostructured ZnO by nanojunction effect , 2013 .

[602]  Xinbing Zhao,et al.  Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering , 2013 .

[603]  S. Cho,et al.  High-performance flexible thermoelectric generator by control of electronic structure of directly spun carbon nanotube webs with various molecular dopants , 2017 .

[604]  Jun Jiang,et al.  Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe , 2017 .

[605]  T. Ochi,et al.  Fabrication of 200 mm Diameter Sintering Body of Skutterudite Thermoelectric Material by Spark Plasma Sintering , 2017, Journal of Electronic Materials.

[606]  G. J. Snyder,et al.  Grain boundary dominated charge transport in Mg3Sb2-based compounds , 2018 .

[607]  P. Poudeu,et al.  Young's Modulus and Hardness of Zr 0.5 Hf 0.5 Ni x Pd 1– x Sn 0.99 Sb 0.01 Half-Heusler Compounds , 2011 .

[608]  Daoben Zhu,et al.  What To Expect from Conducting Polymers on the Playground of Thermoelectricity: Lessons Learned from Four High-Mobility Polymeric Semiconductors , 2014 .

[609]  G. A. Slack,et al.  Chapter 6 Semiconductor clathrates: A phonon glass electron crystal material with potential for thermoelectric applications , 2001 .