A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo

[1]  A. Brazma,et al.  The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences , 2021, Nucleic Acids Res..

[2]  Shaomeng Wang,et al.  SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression. , 2021, ACS medicinal chemistry letters.

[3]  H. Kantarjian,et al.  Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring , 2020, American journal of hematology.

[4]  R. Moriggl,et al.  Direct Targeting Options for STAT3 and STAT5 in Cancer , 2019, Cancers.

[5]  Liu Liu,et al.  Structure-Based Discovery of SD-36 as a Potent, Selective and Efficacious PROTAC Degrader of STAT3 Protein. , 2019, Journal of medicinal chemistry.

[6]  Liu Liu,et al.  A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. , 2019, Cancer cell.

[7]  T. Rülicke,et al.  High activation of STAT5A drives peripheral T-cell lymphoma and leukemia , 2019, Haematologica.

[8]  R. van Boxtel,et al.  STAT5 is essential for IL-7-mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. , 2018, Blood advances.

[9]  S. Wingett,et al.  FastQ Screen: A tool for multi-genome mapping and quality control , 2018, F1000Research.

[10]  Jisung Park,et al.  Pharmacologic inhibition of STAT5 in acute myeloid leukemia , 2018, Leukemia.

[11]  C. Crews,et al.  Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. , 2017, Cell chemical biology.

[12]  Craig M. Crews,et al.  Induced protein degradation: an emerging drug discovery paradigm , 2016, Nature Reviews Drug Discovery.

[13]  John J Murphy,et al.  STAT5 in Cancer and Immunity. , 2016, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research.

[14]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[15]  L. Kavraki,et al.  Targeting the Src Homology 2 (SH2) Domain of Signal Transducer and Activator of Transcription 6 (STAT6) with Cell-Permeable, Phosphatase-Stable Phosphopeptide Mimics Potently Inhibits Tyr641 Phosphorylation and Transcriptional Activity. , 2015, Journal of medicinal chemistry.

[16]  I. E. Smith,et al.  Catalytic in vivo protein knockdown by small-molecule PROTACs. , 2015, Nature chemical biology.

[17]  Randy J. Zauhar,et al.  An SH2 domain model of STAT5 in complex with phospho-peptides define “STAT5 Binding Signatures” , 2015, Journal of Computer-Aided Molecular Design.

[18]  Edward L. Huttlin,et al.  MultiNotch MS3 Enables Accurate, Sensitive, and Multiplexed Detection of Differential Expression across Cancer Cell Line Proteomes , 2014, Analytical chemistry.

[19]  V. Sexl,et al.  JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. , 2013, Blood.

[20]  W. Vainchenker,et al.  JAK/STAT signaling in hematological malignancies , 2013, Oncogene.

[21]  D. Yan,et al.  Critical requirement for Stat5 in a mouse model of polycythemia vera. , 2012, Blood.

[22]  G. Superti-Furga,et al.  BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. , 2012, Nature chemical biology.

[23]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[24]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[25]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[26]  W. Klepetko,et al.  Identification of oncostatin M as a STAT5-dependent mediator of bone marrow remodeling in KIT D816V-positive systemic mastocytosis. , 2011, The American journal of pathology.

[27]  H. Kantarjian,et al.  Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. , 2010, Blood.

[28]  L. Hennighausen,et al.  Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia , 2010, EMBO molecular medicine.

[29]  K. Akashi,et al.  FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. , 2009, Blood.

[30]  L. Hennighausen,et al.  Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. , 2009, Blood.

[31]  S. Kuromitsu,et al.  Synthesis and evaluation of 2-{[2-(4-hydroxyphenyl)-ethyl]amino}pyrimidine-5-carboxamide derivatives as novel STAT6 inhibitors. , 2007, Bioorganic & medicinal chemistry.

[32]  R. Ilaria,et al.  STAT5 signaling is required for the efficient induction and maintenance of CML in mice. , 2006, Blood.

[33]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[34]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Xueliang Fang,et al.  Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. , 2004, Analytical biochemistry.

[36]  O. Silvennoinen,et al.  Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. , 2004, Blood.

[37]  J. Darnell,et al.  Signalling: STATs: transcriptional control and biological impact , 2002, Nature Reviews Molecular Cell Biology.

[38]  B. Nelson,et al.  The IL-2 Receptor Promotes Lymphocyte Proliferation and Induction of the c-myc, bcl-2, and bcl-x Genes Through the trans-Activation Domain of Stat51 , 2000, The Journal of Immunology.

[39]  B. Calabretta,et al.  Signal Transducer and Activator of  Transcription (STAT)5 Activation by BCR/ABL Is Dependent on Intact Src Homology (SH)3 and SH2 Domains of BCR/ABL and Is Required for Leukemogenesis , 1999, The Journal of Experimental Medicine.

[40]  S. Becker,et al.  Three-dimensional structure of the Stat3β homodimer bound to DNA , 1998, Nature.

[41]  R. V. van Etten,et al.  P210 and P190BCR/ABL Induce the Tyrosine Phosphorylation and DNA Binding Activity of Multiple Specific STAT Family Members* , 1996, The Journal of Biological Chemistry.

[42]  J. Griffin,et al.  Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl , 1996, The Journal of experimental medicine.

[43]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[44]  H. Drexler,et al.  FLT3 mutations in acute myeloid leukemia cell lines , 2003, Leukemia.