Local probabilities of randomly stopped sums of power-law lattice random variables

Let $X_1$ and $N$ be non-negative integer valued power law random variables. For a randomly stopped sum $S_N=X_1+\cdots+X_N$ of independent and identically distributed copies of $X_1$ we establish a first order asymptotics of the local probabilities $P(S_N=t)$ as $t\to+\infty$. Using this result we show the $k^{-\delta}$, $0\le \delta\le 1$ scaling of the local clustering coefficient (of a randomly selected vertex of degree $k$) in a power law affiliation network.

[1]  A. Baltrūnas,et al.  Second order asymptotic behaviour of subordinated sequences with longtailed subordinator , 2007 .

[2]  P. Embrechts,et al.  A Renewal Theorem of Blackwell Type , 1984 .

[3]  Mindaugas Bloznelis,et al.  Degree and clustering coefficient in sparse random intersection graphs , 2013, 1303.3388.

[4]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  H. Fédérer Geometric Measure Theory , 1969 .

[7]  D. Denisov,et al.  Large deviations for random walks under subexponentiality: The big-jump domain , 2007, math/0703265.

[8]  A. A. Borovkov,et al.  Asymptotic Analysis of Random Walks: Notation , 2008 .

[9]  S. N. Dorogovtsev,et al.  Pseudofractal scale-free web. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[12]  Mindaugas Bloznelis,et al.  Degree-Degree Distribution in a Power Law Random Intersection Graph with Clustering , 2014, WAW.

[13]  Titus Hilberdink Asymptotic expansions for Taylor coefficients of the composition of two functions , 2009, Asymptot. Anal..

[14]  C. Heyde A Nonuniform Bound on Convergence to Normality , 1975 .

[15]  Christos H. Papadimitriou,et al.  Modeling Social Networks through User Background and Behavior , 2011, WAW.

[16]  P. A. P. Moran,et al.  An introduction to probability theory , 1968 .

[17]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[18]  T. Hilberdink ON THE TAYLOR COEFFICIENTS OF THE COMPOSITION OF TWO ANALYTIC FUNCTIONS , 1996 .

[19]  Erhard Godehardt,et al.  Recent Progress in Complex Network Analysis: Properties of Random Intersection Graphs , 2013, ECDA.

[20]  A. A. Mogul'skii An integro-local theorem applicable on the whole half-axis to the sums of random variables with regularly varying distributions , 2008 .

[21]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[22]  Paul Erdös,et al.  A property of power series with positive coefficients , 1949 .

[23]  Erhard Godehardt,et al.  Recent Progress in Complex Network Analysis: Models of Random Intersection Graphs , 2013, ECDA.

[24]  V. V. Petrov Sums of Independent Random Variables , 1975 .

[25]  Serguei Foss,et al.  Asymptotics of randomly stopped sums in the presence of heavy tails , 2008, 0808.3697.

[26]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Mindaugas Bloznelis,et al.  Correlation Between Clustering and Degree in Affiliation Networks , 2017, WAW.

[28]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[29]  The closure of the convolution equivalent distribution class under convolution roots with applications to random sums , 2010 .

[30]  이현주 Q. , 2005 .

[31]  K. Ng,et al.  Asymptotic behavior of tail and local probabilities for sums of subexponential random variables , 2004, Journal of Applied Probability.

[32]  S. Asmussen,et al.  Asymptotics for Sums of Random Variables with Local Subexponential Behaviour , 2003, 1303.4709.

[33]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[34]  B. A. Rogozin On the Increase of Dispersion of Sums of Independent Random Variables , 1961 .

[35]  R. Doney A large deviation local limit theorem , 1989, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Remigijus Leipus,et al.  Tail behavior of random sums under consistent variation with applications to the compound renewal risk model , 2008 .

[37]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[38]  Alessandro Vespignani,et al.  Large-scale topological and dynamical properties of the Internet. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[40]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .