Adaptive Detection of Multiple Change-Points in Asset Price Volatility

This chapter considers the multiple change-point problem for time series, including strongly dependent processes, with an unknown number of change-points. We propose an adaptive method for finding the segmentation, i.e., the sequence of change-points τ with the optimal level of resolution. This optimal segmentation \( \hat \tau \) is obtained by minimizing a penalized contrast function J(τ, y)+spen(τ). For a given contrast function J(τ, y) and a given penalty function pen(τ), the adaptive procedure for automatically choosing the penalization parameter β is such that the segmentation \( \hat \tau \) does not strongly depend on β. This algorithm is applied to the problem of detection of change-points in the volatility of financial time series, and compared with Vostrikova’s (1981) binary segmentation procedure.

[1]  M. Srivastava,et al.  On Tests for Detecting Change in Mean , 1975 .

[2]  D. Hawkins Testing a Sequence of Observations for a Shift in Location , 1977 .

[3]  R. Bhattacharya,et al.  THE HURST EFFECT UNDER TRENDS , 1983 .

[4]  D. Wolfe,et al.  Multiple changepoints problem-nonparmetric procedures for estimation of the points of change , 1985 .

[5]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[6]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[7]  F. Lombard Rank tests for changepoint problems , 1987 .

[8]  P. K. Bhattacharya Maximum likelihood estimation of a change-point in the distribution of independent random variables: General multiparameter case , 1987 .

[9]  Yi-Ching Yao Estimating the number of change-points via Schwarz' criterion , 1988 .

[10]  Baiqi Miao,et al.  Detection of change points using rank methods , 1988 .

[11]  R. Leipus,et al.  Functional CLT for nonparametric estimates of the spectrum and change-point problem for a spectral function , 1990 .

[12]  P. Robinson,et al.  Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression , 1991 .

[13]  Liudas Giraitis,et al.  Testing and estimating in the change-point problem of the spectral function , 1992 .

[14]  B. Brodsky,et al.  Nonparametric Methods in Change Point Problems , 1993 .

[15]  Marc Lavielle Detection of changes in the spectrum of a multidimensional process , 1993, IEEE Trans. Signal Process..

[16]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[17]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[18]  G. C. Tiao,et al.  Use of Cumulative Sums of Squares for Retrospective Detection of Changes of Variance , 1994 .

[19]  Hyune Ju Kim Likelihood Ratio and Cumulative Sum Tests for a Change-Point in Linear Regression , 1994 .

[20]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .

[21]  Chia-Shang James Chu,et al.  Detecting parameter shift in garch models , 1995 .

[22]  C. Granger,et al.  Some Properties of Absolute Return, An Alternative Measure of Risk , 1995 .

[23]  R. Leipus,et al.  The change-point problem for dependent observations , 1996 .

[24]  Jan Beran,et al.  Testing for a change of the long-memory parameter , 1996 .

[25]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[26]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[27]  Re-Emerging Markets , 1997 .

[28]  Thomas Mikosch,et al.  Change of structure in financial time series, long range dependence and the GARCH model , 1998 .

[29]  Marc Lavielle,et al.  Optimal segmentation of random processes , 1998, IEEE Trans. Signal Process..

[30]  Lajos Horváth,et al.  LIMIT THEOREMS FOR QUADRATIC FORMS WITH APPLICATIONS TO WHITTLE'S ESTIMATE , 1999 .

[31]  M. Lavielle Detection of multiple changes in a sequence of dependent variables , 1999 .

[32]  Jan Beran,et al.  Amendments and Corrections : Testing for a change of the long-memory parameter , 1999 .

[33]  C. Inclan,et al.  Volatility in Emerging Stock Markets , 1997, Journal of Financial and Quantitative Analysis.

[34]  R. Leipus,et al.  Testing for parameter changes in ARCH models , 1999 .

[35]  Clive W. J. Granger,et al.  Occasional Structural Breaks and Long Memory , 1999 .

[36]  Andrea Gaunersdorfer,et al.  A Nonlinear Structural Model for Volatility Clustering , 2000 .

[37]  N. Amosova On the necessity of Statulevičius' condition in limit theorems for large-deviation probabilities , 1999 .

[38]  Irène Gijbels,et al.  On the Estimation of Jump Points in Smooth Curves , 1999 .

[39]  Gilles Teyssière Modelling Exchange Rates Volatility with Multivariate Long-Memory ARCH Processes , 1999 .

[40]  Empirical Process of the Squared Residuals of an ARCH Sequence , 2001 .

[41]  C. Granger Current Perspectives on Long Memory Processes , 2000 .

[42]  Marc Lavielle,et al.  The Multiple Change-Points Problem for the Spectral Distribution , 2000 .

[43]  H. Müller,et al.  Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation , 2000 .

[44]  É. Moulines,et al.  Least‐squares Estimation of an Unknown Number of Shifts in a Time Series , 2000 .

[45]  Piotr Kokoszka,et al.  Change-point estimation in ARCH models , 2000 .

[46]  Marc Lavielle,et al.  An application of MCMC methods for the multiple change-points problem , 2001, Signal Process..

[47]  Lajos Horváth,et al.  Change-Point Detection in Long-Memory Processes , 2001 .

[48]  Change-point detection in GARCH models: asymptotic and bootstrap tests , 2002 .

[49]  C. Granger LONG MEMORY, VOLATILITY, RISK AND DISTRIBUTION , 2002 .

[50]  P. Guttorp,et al.  Testing for homogeneity of variance in time series: Long memory, wavelets, and the Nile River , 2002 .

[51]  Mingzhou Ding,et al.  Processes with long-range correlations : theory and applications , 2003 .

[52]  Thomas Mikosch,et al.  Long range dependence effects and ARCH modeling , 2003 .

[53]  Gilles Teyssière Interaction models for common long-range dependence in asset price volatilities , 2003 .

[54]  Piotr Kokoszka,et al.  SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS , 2004, Econometric Theory.

[55]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[56]  Testing for parameter constancy in GARCH(p,q) models , 2004 .

[57]  Thomas Mikosch,et al.  Changes of structure in financial time series and the GARCH model , 2004 .

[58]  C. Granger,et al.  Nonstationarities in Stock Returns , 2005, Review of Economics and Statistics.

[59]  Gilles Teyssière,et al.  Long Memory in Economics , 2006 .

[60]  M. Lavielle,et al.  Detection of multiple change-points in multivariate time series , 2006 .

[61]  Q. Shao,et al.  On discriminating between long-range dependence and changes in mean , 2006, math/0607803.

[62]  Patrice Abry,et al.  Wavelet Analysis of Nonlinear Long-Range Dependent Processes. Applications to Financial Time Series , 2007 .

[63]  Liudas Giraitis,et al.  Recent Advances in ARCH Modelling , 2007 .

[64]  B. Sen,et al.  Streaming motion in Leo I , 2009, 0905.2544.