Rolling quantum dice with a superconducting qubit
暂无分享,去创建一个
John M. Martinis | R. Barends | A. G. Fowler | A. Megrant | D. Sank | Z. Chen | A. Dunsworth | J. Wenner | B. Chiaro | A. N. Cleland | C. Quintana | Y. Chen | A. N. Korotkov | P. Roushan | R. Barends | Yu Chen | J. Kelly | A. Megrant | P. O’Malley | D. Sank | J. Wenner | T. White | A. Cleland | J. Martinis | A. Fowler | B. Campbell | Z. Chen | B. Chiaro | A. Dunsworth | E. Jeffrey | J. Mutus | C. Neill | C. Quintana | P. Roushan | A. Veitia | Y. Chen | A. Korotkov | Zijun Chen | I. Hoi | E. Jeffrey | T. C. White | J. Kelly | I.-C. Hoi | J. Mutus | C. Neill | B. Campbell | P. J. J. O'Malley | A. Veitia | B. Campbell
[1] A. Kitaev. Quantum computations: algorithms and error correction , 1997 .
[2] G. Vetrovec. DES , 2021, Encyclopedia of Systems and Control.
[3] J. Emerson,et al. Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.
[4] Christoph Dankert,et al. Exact and Approximate Unitary 2-Designs: Constructions and Applications , 2006, quant-ph/0606161.
[5] These authors contributed equally to this work. , 2007 .
[6] D. Gross,et al. Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.
[7] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[8] Christoph Dankert,et al. Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .
[9] J. P. Home,et al. Realization of a programmable two-qubit quantum processor , 2009, 0908.3031.
[10] R. Laflamme,et al. Randomized benchmarking of single- and multi-qubit control in liquid-state NMR quantum information processing , 2008, 0808.3973.
[11] Aidan Roy,et al. Unitary designs and codes , 2008, Des. Codes Cryptogr..
[12] S. Girvin,et al. Implementing optimal control pulse shaping for improved single-qubit gates , 2010, 1005.1279.
[13] Erik Lucero,et al. Reduced phase error through optimized control of a superconducting qubit , 2010, 1007.1690.
[14] Luigi Frunzio,et al. Optimized driving of superconducting artificial atoms for improved single-qubit gates , 2010 .
[15] B. Lanyon,et al. Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.
[16] Joseph Emerson,et al. Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.
[17] M Steffen,et al. Efficient measurement of quantum gate error by interleaved randomized benchmarking. , 2012, Physical review letters.
[18] Jay M. Gambetta,et al. Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.
[19] Yasunobu Nakamura,et al. Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. , 2012, Physical review letters.
[20] Shelby Kimmel,et al. Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.
[21] Jay M. Gambetta,et al. Process verification of two-qubit quantum gates by randomized benchmarking , 2012, 1210.7011.
[22] R. Barends,et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.
[23] Andrew W. Cross,et al. Investigating the limits of randomized benchmarking protocols , 2013, 1308.2928.
[24] R. Barends,et al. Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.
[25] A N Cleland,et al. Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.
[26] N. Linke,et al. High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.
[27] Matthew B. Hastings,et al. Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..
[28] Neil J. Ross,et al. Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..