Quantum state reconstruction from dynamical systems theory

When an informationally incomplete set of observables is considered there are several solutions to the quantum state reconstruction problem using von Neumann measurements. The set of solutions are known as Pauli partners, which are not easy to find even numerically. We present, in a self-contained paper, a new way to find this solutions using the physical imposition operator. We show that every Pauli partner is an attractive fixed point of this operator, which means that we can find complete sets of Pauli partners very efficiently. As a particular case, we found numerically 24 mutually unbiased bases in dimension N=23 in less than 30 seconds in a standard PC. We hope that the algorithm presented can be adapted to construct MU Constellations, SIC-POVMs, Equiangular Tight Frames and Quantum t-Designs, which could open new possibilities to find numerical solutions to these open problems related with quantum information theory.

[1]  One cannot hear the winding number , 2006, math/0612192.

[2]  Sadri Hassani,et al.  Nonlinear Dynamics and Chaos , 2000 .

[3]  A. Perelomov,et al.  On a problem posed by Pauli , 1994 .

[4]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[5]  State determination: An iterative algorithm , 2007, 0712.4018.

[6]  Ernst Hellinger,et al.  Die Orthogonalinvarianten quadratischer Formen von unendlichvielen Variabelen , 2022 .

[7]  P. Jaming,et al.  Phase retrieval techniques for radar ambiguity problems , 1999 .

[8]  К задаче Паули@@@On the Pauli Problem , 1996 .

[9]  C. Archer There is no generalization of known formulas for mutually unbiased bases , 2003, quant-ph/0312204.

[10]  Stefan Weigert,et al.  All mutually unbiased bases in dimensions two to five , 2009, Quantum Inf. Comput..

[11]  Hans Hahn,et al.  Über die Integrale des Herrn Hellinger und die Orthogonalinvarianten der quadratischen Formen von unendlich vielen Veränderlichen , 1912 .

[12]  S. Weigert,et al.  Affine Constellations Without Mutually Unbiased Counterparts , 2010, 1007.3969.

[13]  Задача Паули и связанные с ней математические вопросы@@@Pauli problem and related mathematical problems , 2008 .

[15]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[16]  Máté Matolcsi,et al.  The problem of mutually unbiased bases in dimension 6 , 2010, Cryptography and Communications.

[17]  Paul Busch,et al.  Informationally complete sets of physical quantities , 1991 .

[18]  P. Oscar Boykin,et al.  A New Proof for the Existence of Mutually Unbiased Bases , 2002, Algorithmica.

[19]  John V. Corbett,et al.  Are wave functions uniquely determined by their position and momentum distributions? , 1977, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[20]  Vladik Kreinovich,et al.  Prediction problem in quantum mechanics is intractable (NP-Hard) , 1991 .

[21]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[22]  A. D. L. Torre,et al.  Quantum mechanics in finite-dimensional Hilbert space , 2002, quant-ph/0205159.

[23]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[24]  J. Amiet,et al.  Reconstructing a pure state of a spin s through three Stern-Gerlach measurements , 1998, quant-ph/9809018.

[25]  V. Arnold,et al.  Dynamical Systems III , 1987 .

[26]  Hans Reichenbach,et al.  Philosophic foundations of quantum mechanics , 1945 .

[27]  S. Brierley,et al.  Constructing Mutually Unbiased Bases in Dimension Six , 2009, 0901.4051.

[28]  Pauli problem for a spin of arbitrary length: A simple method to determine its wave function. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[30]  Stefan Weigert,et al.  Maximal sets of mutually unbiased quantum states in dimension 6 , 2008, 0808.1614.

[31]  Stefan Weigert,et al.  Mutually unbiased bases and semi-definite programming , 2010, 1006.0093.

[32]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.