ON THE PERIOD FUNCTION OF LIENARD SYSTEMS

Abstract We study the period functionTof a centerOof a Lienard system. A sufficient condition for the monotonicity ofT, or for the isochronicity ofO, is given. Such a condition is also necessary whenfandgare analytic, andgis odd. In this case a characterization of isochronous centers of Lienard systems is given. Strict monotonicity and global monotonicity ofTare also investigated.

[1]  Lamberto Cesari,et al.  Asymptotic Behavior and Stability Problems in Ordinary Differential Equations , 1963 .

[2]  E. Freire,et al.  Isochronicity via normal form , 2000 .

[3]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[4]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[5]  COMMUTATORS AND LINEARIZATIONS OF ISOCHRONOUS CENTRES , 2000 .

[6]  Víctor Mañosa,et al.  Algebraic Properties of the Liapunov and Period Constants , 1997 .

[7]  Carmen Chicone,et al.  The monotonicity of the period function for planar Hamiltonian vector fields , 1987 .

[8]  J. J. Levin,et al.  Nonlinear oscillations of fixed period , 1963 .

[9]  R. Schaaf A class of Hamiltonian systems with increasing periods. , 1985 .

[10]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .

[11]  Giovanni Sansone,et al.  Equazioni differenziali non lineari , 1956 .

[12]  M. Urabe The potential force yielding a periodic motion whose period is an arbitrary continuous function of the amplitude of the velocity , 1962 .

[13]  Z. Opial Sur les périodes des solutions de l'équation différentielle x'' + g(x) = 0 , 1961 .

[14]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[15]  C. Collins Conditions for a centre in a simple class of cubic systems , 1997 .

[16]  Colin Christopher,et al.  Isochronous centers in planar polynomial systems , 1997 .

[17]  C. Obi Analytical theory of nonlinear oscillations. VII. The periods of the periodic solutions of the equation ẍ + g(x) = 0 , 1976 .