A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle

An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422, 1–58, 2003). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8(2:14), 1–35, 2012) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34, 381–392, 1972) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.

[1]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[2]  Richard J. Boulton,et al.  Theorem Proving in Higher Order Logics , 2003, Lecture Notes in Computer Science.

[3]  Laurence Kirby,et al.  Addition and multiplication of sets , 2007, Math. Log. Q..

[4]  Philippe Darondeau,et al.  Petri Net Reachability Graphs: Decidability Status of First Order Properties , 2012, Log. Methods Comput. Sci..

[5]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[6]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[7]  Kurt Gödel Kurt Godel: Collected Works: Volume IV , 2013 .

[8]  Cezary Kaliszyk,et al.  General Bindings and Alpha-Equivalence in Nominal Isabelle , 2012, Log. Methods Comput. Sci..

[9]  D.H.J. de Jongh,et al.  The logic of the provability , 1998 .

[10]  A Short Guide to Gödel's Second Incompleteness Theorem , 2003 .

[11]  On Completeness and Consistency in Nonparametric Instrumental Variable Models , 2015 .

[12]  de Ng Dick Bruijn,et al.  Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[13]  Janet Mackenzie The Editor's Companion: Completeness and consistency , 2004 .

[14]  C PaulsonLawrence Set theory for verification. I , 1993 .

[15]  Lawrence C. Paulson,et al.  Set theory for verification: I. From foundations to functions , 1993, Journal of Automated Reasoning.

[16]  Michael Norrish,et al.  Proof Pearl: De Bruijn Terms Really Do Work , 2007, TPHOLs.

[17]  N. Shankar Metamathematics, Machines, and Gödels's Proof: The Undecidable Sentence , 1994 .

[18]  John Harrison,et al.  Towards Self-verification of HOL Light , 2006, IJCAR.

[19]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[20]  John Harrison,et al.  Handbook of Practical Logic and Automated Reasoning , 2009 .

[21]  Richard E. Grandy Advanced Logic for Applications , 1977 .

[22]  Gary Mar,et al.  Godel’s theorem: an incomplete guide to its use and abuse , 2007 .

[23]  N. Shankar Proof-checking metamathematics (theorem-proving) , 1986 .

[24]  Lawrence C. Paulson,et al.  A MACHINE-ASSISTED PROOF OF GÖDEL’S INCOMPLETENESS THEOREMS FOR THE THEORY OF HEREDITARILY FINITE SETS , 2014, The Review of Symbolic Logic.

[25]  R. Hodel An Introduction to Mathematical Logic , 1995 .

[26]  Lawrence Charles Paulson The Relative Consistency of the Axiom of Choice Mechanized Using Isabelle⁄zf , 2021, 2104.12674.

[27]  Tobias Nipkow,et al.  Proof Pearl: Defining Functions over Finite Sets , 2005, TPHOLs.

[28]  Andreas Lochbihler Formalising FinFuns - Generating Code for Functions as Data from Isabelle/HOL , 2009, TPHOLs.

[29]  Lawrence C. Paulson,et al.  The Relative Consistency of the Axiom of Choice - Mechanized Using Isabelle/ZF , 2008, CiE.

[30]  Lawrence C. Paulson Gödel's Incompleteness Theorems , 2013, Arch. Formal Proofs.

[31]  R.S.S. O'Connor,et al.  Incompleteness & completeness : formalizing logic and analysis in type theory , 2005 .

[32]  Tobias Nipkow,et al.  More Church-Rosser Proofs (in Isabelle/HOL) , 1996, CADE.

[33]  Russell O'Connor Essential Incompleteness of Arithmetic Verified by Coq , 2005, TPHOLs.

[34]  Tom Melham,et al.  Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings , 2005, TPHOLs.

[35]  Andrew M. Pitts,et al.  Nominal Sets: Names and Symmetry in Computer Science , 2013 .

[36]  S. Świerczkowski Finite sets and Gödel's incompleteness theorems , 2003 .

[37]  Christian Urban,et al.  Nominal Techniques in Isabelle/HOL , 2005, Journal of Automated Reasoning.

[38]  Tobias Nipkow More Church–Rosser Proofs , 2004, Journal of Automated Reasoning.

[39]  W. R. Howard Gödel's Theorem: An Incomplete Guide to its Use and Abuse , 2006 .

[40]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[41]  Kurt Gödel,et al.  On Formally Undecidable Propositions of Principia Mathematica and Related Systems , 1966 .

[42]  Kenneth Kunen,et al.  Set Theory: An Introduction to Independence Proofs , 2010 .