Improved measurement results for the Avogadro constant using a 28Si-enriched crystal

New results are reported from an ongoing international research effort to accurately determine the Avogadro constant by counting the atoms in an isotopically enriched silicon crystal. The surfaces of two 28Si-enriched spheres were decontaminated and reworked in order to produce an outer surface without metal contamination and improved sphericity. New measurements were then made on these two reconditioned spheres using improved methods and apparatuses. When combined with other recently refined parameter measurements, the Avogadro constant derived from these new results has a value of $N_A = 6.022 140 76(12) \times 10^{23}$ mol$^{-1}$. The X-ray crystal density method has thus achieved the target relative standard uncertainty of $2.0 \times 10^{-8}$ necessary for the realization of the definition of the new kilogram.

[1]  G. Mana,et al.  (30)Si mole fraction of a silicon material highly enriched in (28)Si determined by instrumental neutron activation analysis. , 2015, Analytical chemistry.

[2]  G. Mana,et al.  Instrumental neutron activation analysis of an enriched 28Si single-crystal , 2013, Journal of Radioanalytical and Nuclear Chemistry.

[3]  A G Steele,et al.  Extending En for measurement science , 2006 .

[4]  Achim J. Leistner,et al.  The influence of Young's modulus on roundness in silicon sphere fabrication , 1996, Proceedings of 20th Biennial Conference on Precision Electromagnetic Measurements.

[5]  Gerhard Bönsch,et al.  Absolute volume determination of a silicon sphere with the spherical interferometer of PTB , 2005 .

[6]  Frank Scholze,et al.  Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology , 2011 .

[7]  Achim J. Leistner,et al.  The influence of Young's modulus on roundness in silicon sphere fabrication [Avogadro constant] , 1997 .

[8]  Kenichi Fujii,et al.  Phase corrections in the optical interferometer for Si sphere volume measurements at NMIJ , 2011 .

[9]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2007, 0801.0028.

[10]  Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis , 2012, 1301.2693.

[11]  C. A. Sanchez,et al.  A determination of Planck's constant using the NRC watt balance , 2014 .

[12]  A. H. Wapstra,et al.  The AME2012 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[13]  Stephan Schlamminger,et al.  Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology , 2014, 1401.8160.

[14]  Michael Krystek,et al.  Volume determination of the Avogadro spheres of highly enriched 28Si with a spherical Fizeau interferometer , 2011 .

[15]  H Fang,et al.  Methods to determine water vapour sorption on mass standards , 2004 .

[16]  Zheng-wei Hu High-resolution X-ray Diffractometry and Topography , 2000 .

[17]  H. Fujimoto,et al.  Homogeneity characterization of lattice spacing of silicon single crystals by a self-referenced lattice comparator , 2011, 29th Conference on Precision Electromagnetic Measurements (CPEM 2014).

[18]  Michael Stock,et al.  Calibration campaign against the international prototype of the kilogram in anticipation of the redefinition of the kilogram part I: comparison of the international prototype with its official copies , 2015 .

[19]  D. B. Newell,et al.  A summary of the Planck constant measurements using a watt balance with a superconducting solenoid at NIST , 2015, 1501.06796.

[20]  Peter J. Mohr,et al.  CODATA Recommended Values of the Fundamental Physical Constants (version 4.0) , 2003 .

[21]  A Picard,et al.  Mass determinations of a 1 kg silicon sphere for the Avogadro project , 2006 .

[22]  M. Krystek,et al.  PTB’s enhanced stitching approach for the high-accuracy interferometric form error characterization of spheres , 2014 .

[23]  D. K. Bowen,et al.  High Resolution X-Ray Diffractometry And Topography , 1998 .

[24]  K. Fujii,et al.  Molar-mass measurement of a 28Si-enriched silicon crystal for determination of the Avogadro constant , 2014 .

[25]  I Busch,et al.  Determination of the Avogadro constant by counting the atoms in a 28Si crystal. , 2010, Physical review letters.

[26]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[27]  Kenichi Fujii,et al.  Volume measurements of 28Si spheres using an interferometer with a flat etalon to determine the Avogadro constant , 2011 .

[28]  Naoki Kuramoto,et al.  Improvements to the Volume Measurement of 28Si Spheres to Determine the Avogadro Constant , 2015, IEEE Transactions on Instrumentation and Measurement.

[29]  CCQM Guidance note: Estimation of a consensus KCRV and associated Degrees of Equivalence , 2013 .

[30]  Kenichi Fujii,et al.  Mass measurement of 1 kg silicon spheres to establish a density standard , 2004 .

[31]  E. J. Boyd,et al.  Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon , 2012, Journal of Microelectromechanical Systems.

[32]  D. Schiel,et al.  Novel concept for the mass spectrometric determination of absolute isotopic abundances with improved measurement uncertainty: Part 1 – theoretical derivation and feasibility study , 2010 .

[33]  G. Turk,et al.  Absolute silicon molar mass measurements, the Avogadro constant and the redefinition of the kilogram , 2014 .

[34]  Yasushi Azuma,et al.  Counting the atoms in a 28Si crystal for a new kilogram definition , 2011 .

[35]  Michael Borys,et al.  State-of-the-art mass determination of 28Si spheres for the Avogadro project , 2011 .

[36]  Naoki Kuramoto,et al.  Diameter Comparison of a Silicon Sphere for the International Avogadro Coordination Project , 2010, IEEE Transactions on Instrumentation and Measurement.

[37]  Frank Scholze,et al.  A quarter‐century of metrology using synchrotron radiation by PTB in Berlin , 2009 .

[38]  Giovanni Mana,et al.  Measurement of the {2 2 0} lattice-plane spacing of a 28Si x-ray interferometer , 2010, 1010.3088.

[39]  Ralf D. Geckeler,et al.  Improving the Measurement of the Diameter of Si Spheres , 2007, IEEE Transactions on Instrumentation and Measurement.

[40]  Yasushi Azuma,et al.  Surface layer determination for the Si spheres of the Avogadro project , 2011 .

[41]  Ming Qin,et al.  A study of nickel silicide film as a mechanical material , 2000 .

[42]  G. Mana,et al.  A More Accurate Measurement of the 28Si Lattice Parameter , 2015 .

[43]  Giovanni Mana,et al.  The lattice parameter of the 28Si spheres in the determination of the Avogadro constant , 2011 .

[44]  Michael Krystek,et al.  Current State of Avogadro ${}^{28}$Si sphere S8 , 2013, IEEE Transactions on Instrumentation and Measurement.

[45]  Arnold Nicolaus,et al.  Determination of the Avogadro constant via the silicon route , 2003 .

[46]  L. Colombo,et al.  Lattice strain at c-Si surfaces: a density functional theory calculation , 2014, 1412.3301.

[47]  Arnold Nicolaus,et al.  International determination of the Avogadro constant , 2011 .

[48]  Clemens Elster,et al.  On the adjustment of inconsistent data using the Birge ratio , 2014 .

[49]  M. Prata,et al.  Neutron activation analysis of the 30Si content of highly enriched 28Si: proof of concept and estimation of the achievable uncertainty , 2014, 1405.7524.

[50]  Naoki Kuramoto,et al.  Mass Measurement of 1-kg Silicon Spheres for Determination of the Avogadro and Planck Constants , 2015, IEEE Transactions on Instrumentation and Measurement.

[51]  Michael Berglund,et al.  Application of consistency checking to evaluation of uncertainty in multiple replicate measurements , 2008 .

[52]  Detlef Schiel,et al.  Molar mass of silicon highly enriched in 28Si determined by IDMS , 2011 .

[53]  A. Pramann,et al.  Probing the homogeneity of the isotopic composition and molar mass of the ‘Avogadro’-crystal , 2015 .

[54]  Naoki Kuramoto,et al.  Homogeneity Characterization of Lattice Spacing of Silicon Single Crystals , 2015, IEEE Transactions on Instrumentation and Measurement.

[55]  N Bignell,et al.  Mass comparison of the 1 kg silicon sphere AVO#3 traceable to the International Prototype K , 2009 .

[56]  D. Schiel,et al.  Novel Concept for the Mass Spectrometric Determination of Absolute Isotopic Abundances with Improved Measurement Uncertainty: Part 3 - Molar Mass of Silicon Highly Enriched in 28Si , 2011 .

[57]  Z. Mester,et al.  Determination of the atomic weight of 28Si-enriched silicon for a revised estimate of the Avogadro constant. , 2012, Analytical chemistry.

[58]  S Mizushima,et al.  Determination of the amount of gas adsorption on SiO2/Si(100) surfaces to realize precise mass measurement , 2004 .

[59]  T. Abe,et al.  Calibration curve for infrared spectrophotometry of nitrogen in silicon , 1985 .