Variational Modeling and Complex Fluids

In this chapter, a general energetic variational framework for modeling the dynamics of complex fluids is introduced. The approach reveals and focuses on the couplings and competitions between different mechanisms involved for specific materials, including energetic contributions vs. kinematic transport relations, conservative parts vs. dissipative parts and kinetic parts vs. free energy parts of the systems, macroscopic deformation or flows vs. microscopic deformations, bulk effects vs. boundary conditions, etc. One has to notice that these variational approaches are motivated by the seminal works of Rayleigh (Proc Lond Math Soc 1(1):357–368, 1871) and Onsager (Phys Rev 37(4):405, 1931; Phys Rev 38(12):2265, 1931). In this chapter, the underlying physical principles and background, as well as the limitations of these approaches, are demonstrated. Besides the classical models for ideal fluids and elastic solids, these approaches are employed for models of viscoelastic fluids, diffusion, and mixtures.

[1]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[2]  Chun Liu,et al.  The slip boundary condition in the dynamics of solid particles immersed in Stokesian flows , 2010 .

[3]  Daniel D. Joseph,et al.  Fundamentals of Two-Fluid Dynamics: Part II: Lubricated Transport, Drops and Miscible Liquids , 1992 .

[4]  Daniel M. Anderson,et al.  Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities , 2000 .

[5]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[6]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[7]  Ludmil Zikatanov,et al.  Mathematical models for the deformation of electrolyte droplets , 2007 .

[8]  Chun Liu,et al.  On energetic variational approaches in modeling the nematic liquid crystal flows , 2008 .

[9]  G. D. Doolen,et al.  Recent advances in lattice Boltzmann methods , 1998 .

[10]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[11]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[12]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[13]  L. Evans,et al.  Partial Differential Equations , 1941 .

[14]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  I. Holopainen Riemannian Geometry , 1927, Nature.

[16]  M. Calderer,et al.  Poiseuille Flow of Nematic Liquid Crystals , 2000 .

[17]  D. Joseph Fluid Dynamics of Two Miscible Liquids with Diffusion and Gradient Stresses , 1993 .

[18]  N. Walkington,et al.  Mixed Methods for the Approximation of Liquid Crystal Flows , 2002 .

[19]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[20]  Donald M. Anderson,et al.  A diffuse-interface description of internal waves in a near-critical fluid , 1997 .

[21]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[22]  C. Liu,et al.  Diffuse interface methods for multiple phase materials: an energetic variational approach , 2014, 1402.5375.

[23]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.

[24]  Qiang Du,et al.  An Enhanced Macroscopic Closure Approximation to the Micro-Macro FENE Model for Polymeric Materials , 2008, Multiscale Model. Simul..

[25]  Radu Balescu,et al.  Statistical dynamics: matter out of equilibrium , 1997 .

[26]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[27]  Rolf J. Ryham,et al.  An Energetic Variational Approach to Mathematical Modeling of Charged Fluids: Charge Phases, Simulation and Well Posedness , 2006 .

[28]  Wheeler,et al.  Phase-field models for anisotropic interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Thomas Y. Hou,et al.  The long-time motion of vortex sheets with surface tension , 1997 .

[30]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[31]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[32]  M. Gurtin,et al.  An introduction to continuum mechanics , 1981 .

[33]  Q. Du,et al.  On Some Probability Density Function Based Moment Closure Approximations of Micro–Macro Models for Viscoelastic Polymeric Fluids , 2010 .

[34]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[35]  P. Lions,et al.  On the Fokker-Planck-Boltzmann equation , 1988 .

[36]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[37]  T. Blesgen,et al.  A generalization of the Navier-Stokes equations to two-phase flows , 1999 .

[38]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[39]  J. Lumley,et al.  Mechanics of non-Newtonian fluids , 1978 .

[40]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[41]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[42]  Franck Boyer,et al.  Mathematical study of multi‐phase flow under shear through order parameter formulation , 1999 .

[43]  John L. West,et al.  Polymer-Dispersed Liquid Crystals , 1990 .

[44]  Eduard Feireisl,et al.  Mathematical theory of compressible, viscous, and heat conducting fluids , 2007, Comput. Math. Appl..

[45]  H. C. Öttinger,et al.  CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem , 1995 .

[46]  P. Sheng,et al.  An Energetic Variational Approach for ion transport , 2014, 1408.4114.

[47]  Jie Shen,et al.  A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method , 2003 .

[48]  J. Israelachvili Intermolecular and surface forces , 1985 .

[49]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[50]  George L. Hand,et al.  A theory of anisotropic fluids , 1962, Journal of Fluid Mechanics.

[51]  T. Qian,et al.  Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates , 2012 .

[52]  Jean-Yves Chemin,et al.  About Lifespan of Regular Solutions of Equations Related to Viscoelastic Fluids , 2001, SIAM J. Math. Anal..

[53]  P. Sheng,et al.  A variational approach to moving contact line hydrodynamics , 2006, Journal of Fluid Mechanics.

[54]  Kyung-Hoi Lee Preface for the First English Edition , 1999 .

[55]  C. Tsallis Entropy , 2022, Thermodynamic Weirdness.

[56]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[57]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[58]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[59]  Robert F. Sekerka,et al.  On the thermodynamics of crystalline solids , 1985 .

[60]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[61]  Guo-Wei Wei,et al.  Poisson-Boltzmann-Nernst-Planck model. , 2011, The Journal of chemical physics.

[62]  Franck Boyer,et al.  Study of a three component Cahn-Hilliard flow model , 2006 .

[63]  M. Wheeler,et al.  An augmented-Lagrangian method for the phase-field approach for pressurized fractures , 2014 .

[64]  S. Osher,et al.  A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows , 1996 .

[65]  Xiang-Sheng Wang,et al.  Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[67]  Chun Liu,et al.  Liquid Crystal Flow: Dynamic and Static Configurations , 2000, SIAM J. Appl. Math..

[68]  Jean Philibert,et al.  The Open-access Journal for the Basic Principles of Diffusion Theory, Experiment and Application , 2007 .

[69]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[70]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[71]  Ping Zhang,et al.  On a micro‐macro model for polymeric fluids near equilibrium , 2007 .

[72]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[73]  J. Carrillo,et al.  A MAXIMUM ENTROPY PRINCIPLE BASED CLOSURE METHOD FOR MACRO-MICRO MODELS OF POLYMERIC MATERIALS , 2008 .

[74]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[75]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[76]  Juan Luis Vázquez,et al.  Nonlinear Diffusion with Fractional Laplacian Operators , 2012 .

[77]  Brian J. Edwards,et al.  Thermodynamics of flowing systems : with internal microstructure , 1994 .

[78]  Victor L. Berdichevsky,et al.  Variational Principles of Continuum Mechanics , 2009 .

[79]  M. Gurtin Thermomechanics of Evolving Phase Boundaries in the Plane , 1993 .

[80]  John William Strutt,et al.  Some General Theorems relating to Vibrations , 1871 .

[81]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[82]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[83]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[84]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[85]  Jie Shen,et al.  Decoupled Energy Stable Schemes for a Phase-Field Model of Two-Phase Incompressible Flows with Variable Density , 2014, Journal of Scientific Computing.

[86]  H. Abels,et al.  Thermodynamically Consistent, Frame Indifferent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities , 2011, 1104.1336.

[87]  R. Eisenberg,et al.  Comparison of three-dimensional poisson solution methods for particle-based simulation and inhomogeneous dielectrics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[88]  M. Calderer Mathematical problems of liquid crystal flows , 1994 .

[89]  J. Saut,et al.  Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type , 1990 .

[90]  Michael Shelley,et al.  Simulating the dynamics and interactions of flexible fibers in Stokes flows , 2004 .

[91]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[92]  L. Utracki,et al.  Polymer Alloys and Blends , 1990 .

[93]  V. L. Berdichevskiĭ Variational principles of continuum mechanics , 2009 .

[94]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[95]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[96]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[97]  Ping Sheng,et al.  Molecular scale contact line hydrodynamics of immiscible flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[98]  P. Lions,et al.  Ordinary differential equations, transport theory and Sobolev spaces , 1989 .

[99]  Chen,et al.  Interface and contact line motion in a two phase fluid under shear flow , 2000, Physical review letters.

[100]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[101]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[102]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[103]  Mathematisches Forschungsinstitut Oberwolfach,et al.  Hyperbolic Conservation Laws , 2004 .

[104]  F. Lin Solutions of Ginzburg-Landau equations and critical points of the renormalized energy , 1995 .

[105]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[106]  Jie Shen,et al.  Corrigendum: Fourier Spectral Approximation to a Dissipative System Modeling the Flow of Liquid Crystals , 2001, SIAM J. Numer. Anal..

[107]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[108]  Philippe G. Ciarlet,et al.  Theory of Shells , 2000 .

[109]  Xiang Xu,et al.  On the General Ericksen–Leslie System: Parodi’s Relation, Well-Posedness and Stability , 2011, 1105.2180.

[110]  John W. Cahn,et al.  Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .

[111]  J. Cahn,et al.  A Microscopic Theory for Domain Wall Motion and Its Experimental Verification in Fe‐Al Alloy Domain Growth Kinetics , 1977 .

[112]  NOEL J. WALKINGTON,et al.  An Eulerian Description of Fluids Containing Visco-Elastic Particles , 2001 .

[113]  Gilberto Schleiniger,et al.  Mathematical analysis of viscometric (polymer) flow fields in capillaries: Taylor dispersion revisited , 2003 .

[114]  P. Lions,et al.  On the Cauchy problem for Boltzmann equations: global existence and weak stability , 1989 .

[115]  E. C. Childs Dynamics of fluids in Porous Media , 1973 .

[116]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[117]  Weierstrass Field Theory for One-Dimensional Integrals and Strong Minimizers , 2004 .

[118]  Chun Liu Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity , 2000 .

[119]  W. Durand Dynamics of Fluids , 1934 .

[120]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[121]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[122]  P. G. Ciarlet,et al.  Three-dimensional elasticity , 1988 .

[123]  P. Sheng,et al.  Self-Consistent Approach to Global Charge Neutrality in Electrokinetics: A Surface Potential Trap Model , 2014 .

[124]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[125]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[126]  Luis A. Caffarelli,et al.  Non-local Diffusions, Drifts and Games , 2012 .

[127]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[128]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[129]  Seifert,et al.  Vesicles of toroidal topology. , 1991, Physical review letters.

[130]  Daniel D. Joseph,et al.  Fundamentals of two-fluid dynamics , 1993 .

[131]  Chun Liu,et al.  Dynamics of Multi-Component Flows: Diffusive Interface Methods With Energetic Variational Approaches , 2014 .

[132]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg-Landau vortices , 1999 .

[133]  J. Rodrigues On the Mathematical Analysis of Thick Fluids , 2015 .