Proof of the Satisfiability Conjecture for Large k

We establish the satisfiability threshold for random k-SAT for all k ≥ k0. That is, there exists a limiting density αs(k) such that a random k-SAT formula of clause density α is with high probability satisfiable for α < αs, and unsatisfiable for α > αs. The satisfiability threshold αs is given explicitly by the one-step replica symmetry breaking (1SRB) prediction from statistical physics. We believe that our methods may apply to a range of random constraint satisfaction problems in the 1RSB class.

[1]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[2]  Konstantinos Panagiotou,et al.  Catching the k-NAESAT threshold , 2011, STOC '12.

[3]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[4]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[5]  Wenceslas Fernandez de la Vega,et al.  Random 2-SAT: results and problems , 2001, Theor. Comput. Sci..

[6]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[7]  S. Kak Information, physics, and computation , 1996 .

[8]  Allan Sly,et al.  Maximum independent sets on random regular graphs , 2013, 1310.4787.

[9]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[10]  Riccardo Zecchina,et al.  Threshold values of random K‐SAT from the cavity method , 2003, Random Struct. Algorithms.

[11]  Bálint Virág,et al.  Local algorithms for independent sets are half-optimal , 2014, ArXiv.

[12]  M. Talagrand The parisi formula , 2006 .

[13]  John Franco,et al.  Correction to probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1987, Discret. Appl. Math..

[14]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[17]  Cristopher Moore,et al.  The phase transition in 1-in-k SAT and NAE 3-SAT , 2001, SODA '01.

[18]  Amin Coja-Oghlan,et al.  The Condensation Phase Transition in Random Graph Coloring , 2014, APPROX-RANDOM.

[19]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[20]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[21]  Dmitry Panchenko,et al.  Hierarchical exchangeability of pure states in mean field spin glass models , 2013, 1307.2207.

[22]  Charles Bordenave,et al.  Large deviations of empirical neighborhood distribution in sparse random graphs , 2013, 1308.5725.

[23]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .

[24]  Amin Coja-Oghlan,et al.  The asymptotic k-SAT threshold , 2014, STOC.

[25]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[26]  Dmitry Panchenko,et al.  Structure of $$1$$1-RSB Asymptotic Gibbs Measures in the Diluted $$p$$p-Spin Models , 2013, 1308.1944.

[27]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[28]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[29]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[30]  Andrea Montanari,et al.  Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.

[31]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[32]  Amin Coja-Oghlan,et al.  Random regular k-SAT , 2013, arXiv.org.

[33]  Béla Bollobás,et al.  The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.

[34]  Boris G. Pittel,et al.  The Satisfiability Threshold for k-XORSAT , 2012, Combinatorics, Probability and Computing.

[35]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[36]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[37]  Riccardo Zecchina,et al.  Survey propagation: An algorithm for satisfiability , 2002, Random Struct. Algorithms.

[38]  Konstantinos Panagiotou,et al.  Going after the k-SAT threshold , 2013, STOC '13.

[39]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[40]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[41]  Amin Coja-Oghlan,et al.  The condensation phase transition in the regular k-SAT model , 2016, APPROX-RANDOM.

[42]  Alan M. Frieze,et al.  Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.

[43]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[44]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[45]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[46]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[47]  Yannis C. Stamatiou,et al.  Approximating the unsatisfiability threshold of random formulas , 1998, Random Struct. Algorithms.

[48]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[49]  Giorgio Parisi,et al.  On local equilibrium equations for clustering states , 2002, ArXiv.

[50]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[51]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[52]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[53]  Russell Lyons,et al.  Ergodic theory on Galton—Watson trees: speed of random walk and dimension of harmonic measure , 1995, Ergodic Theory and Dynamical Systems.

[54]  M. Mézard,et al.  Replicas and optimization , 1985 .

[55]  D. Panchenko SPIN GLASS MODELS FROM THE POINT OF VIEW OF SPIN DISTRIBUTIONS , 2010, 1005.2720.

[56]  Andrea Montanari,et al.  Clusters of solutions and replica symmetry breaking in random k-satisfiability , 2008, ArXiv.

[57]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[58]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[59]  Allan Sly,et al.  Satisfiability Threshold for Random Regular nae-sat , 2013, Communications in Mathematical Physics.

[60]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[61]  M. Talagrand,et al.  Bounds for diluted mean-fields spin glass models , 2004, math/0405357.

[62]  F. Guerra,et al.  The Thermodynamic Limit in Mean Field Spin Glass Models , 2002, cond-mat/0204280.

[63]  Allan Sly,et al.  The number of solutions for random regular NAE-SAT , 2016, Probability Theory and Related Fields.

[64]  Madhu Sudan,et al.  Limits of local algorithms over sparse random graphs , 2013, ITCS.

[65]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.