Shapes of Alignments - Construction, Combination, and Computation

We present a general approach for representing and combining alignments and computing these combinations, based on the category theoretic notions of diagram, pushout, and colimit. This generalises the possible ‘shapes’ of alignments that have been introduced previously in similar approaches. We use the theory of institutions to represent heterogeneous ontologies, and show how the tool Hets can be employed to compute the colimit ontology of an alignment diagram.

[1]  Bijan Parsia,et al.  Combining OWL ontologies using epsilon-Connections , 2006, J. Web Semant..

[2]  Peter D. Mosses,et al.  Casl Reference Manual , 2004, Lecture Notes in Computer Science.

[3]  Pascal Hitzler,et al.  Formalizing Ontology Alignment and its Operations with Category Theory , 2006, FOIS.

[4]  Peter D. Mosses,et al.  CASL User Manual , 2004, Lecture Notes in Computer Science.

[5]  S. Wölfl,et al.  The Heterogeneous Tool Set , 2007 .

[6]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[7]  Till Mossakowski,et al.  Heterogeneous colimits , 2008, 2008 IEEE International Conference on Software Testing Verification and Validation Workshop.

[8]  Carsten Lutz,et al.  E-connections of abstract description systems , 2004, Artif. Intell..

[9]  Till Mossakowski,et al.  Modules in Transition - Conservativity, Composition, and Colimits , 2007, WoMO.

[10]  Luciano Serafini,et al.  Distributed Description Logics: Assimilating Information from Peer Sources , 2003, J. Data Semant..

[11]  Razvan Diaconescu Grothendieck Institutions , 2002, Appl. Categorical Struct..

[12]  Grigore Rosu,et al.  Institution Morphisms , 2013, Formal Aspects of Computing.

[13]  R. Diaconescu Institution-independent model theory , 2008 .

[14]  Franz Baader,et al.  Connecting many-sorted theories , 2005, Journal of Symbolic Logic.

[15]  Yannis Kalfoglou,et al.  Institutionalising ontology-based semantic integration , 2008, Appl. Ontology.

[16]  Till Mossakowski Comorphism-Based Grothendieck Logics , 2002, MFCS.

[17]  Rod M. Burstall,et al.  Structured Theories in LCF , 1983, CAAP.

[18]  Carsten Lutz,et al.  Conservative Extensions in Expressive Description Logics , 2007, IJCAI.

[19]  Joseph A. Goguen,et al.  Institutions: abstract model theory for specification and programming , 1992, JACM.

[20]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .

[21]  Till Mossakowski Institutional 2-cells and Grothendieck Institutions , 2006, Essays Dedicated to Joseph A. Goguen.

[22]  B. Parsia,et al.  Combining OWL Ontologies Using E-Connections , 2005 .