A Genomic Screen for Modifiers of Tauopathy Identifies Puromycin-Sensitive Aminopeptidase as an Inhibitor of Tau-Induced Neurodegeneration

[1]  M. Fortini,et al.  RETRACTED: γ-Cleavage-Independent Functions of Presenilin, Nicastrin, and Aph-1 Regulate Cell-Junction Organization and Prevent Tau Toxicity In Vivo , 2006, Neuron.

[2]  Mary Kay Lobo,et al.  FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains , 2006, Nature Neuroscience.

[3]  L. Honig,et al.  Model‐guided microarray implicates the retromer complex in Alzheimer's disease , 2005, Annals of neurology.

[4]  B. Hyman,et al.  Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function , 2005, Science.

[5]  F. Liu,et al.  Post-translational modifications of tau protein in Alzheimer’s disease , 2005, Journal of Neural Transmission.

[6]  P. Mcgeer,et al.  Proteolysis of Non-phosphorylated and Phosphorylated Tau by Thrombin* , 2005, Journal of Biological Chemistry.

[7]  S. Zipursky,et al.  Inactivation of Drosophila Apaf-1 related killer suppresses formation of polyglutamine aggregates and blocks polyglutamine pathogenesis. , 2005, Human molecular genetics.

[8]  K. Kosik,et al.  Phosphorylated tau and the neurodegenerative foldopathies. , 2005, Biochimica et biophysica acta.

[9]  G. Schellenberg,et al.  Regulation of tau isoform expression and dementia. , 2005, Biochimica et biophysica acta.

[10]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[11]  Y. Tu,et al.  Distinct Roles of Two Structurally Closely Related Focal Adhesion Proteins, α-Parvins and β-Parvins, in Regulation of Cell Morphology and Survival* , 2004, Journal of Biological Chemistry.

[12]  Feng Chen,et al.  Posttranslational modifications of tau--role in human tauopathies and modeling in transgenic animals. , 2004, Current drug targets.

[13]  C. Lomen‐Hoerth,et al.  Characterization of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia , 2004, Dementia and Geriatric Cognitive Disorders.

[14]  Jonathan Pevsner,et al.  Progress in the use of microarray technology to study the neurobiology of disease , 2004, Nature Neuroscience.

[15]  Feng Chen,et al.  A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac , 2004, Nature Genetics.

[16]  C. Barbato,et al.  Role of N-terminal tau domain integrity on the survival of cerebellar granule neurons , 2004, Cell Death and Differentiation.

[17]  J. Shulman,et al.  Genetic modifiers of tauopathy in Drosophila. , 2003, Genetics.

[18]  D. Dickson,et al.  Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau , 2003, Journal of neurocytology.

[19]  Jae K. Lee,et al.  Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays , 2003, Bioinform..

[20]  D. Dickson,et al.  Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. , 2003, The American journal of pathology.

[21]  S. Meri,et al.  Yin and Yang: complement activation and regulation in Alzheimer’s disease , 2003, Progress in Neurobiology.

[22]  R. Berry,et al.  Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in Alzheimer's disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Hui,et al.  Neuron-Specific Aminopeptidase and Puromycin-Sensitive Aminopeptidase in Rat Brain Development , 2003, Neurochemical Research.

[24]  R. Vos,et al.  Free insulin-like growth factor (IGF)-I and IGF binding proteins 2, 5, and 6 in spinal motor neurons in amyotrophic lateral sclerosis , 2003, The Lancet.

[25]  Yoshio Yamamoto,et al.  Demonstration of puromycin-sensitive alanyl aminopeptidase in Alzheimer disease brain. , 2003, Legal medicine.

[26]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[27]  K. Kosik,et al.  Discovery of compounds that will prevent tau pathology , 2002, Journal of Molecular Neuroscience.

[28]  M. Spillantini,et al.  Tau gene mutations: dissecting the pathogenesis of FTDP-17. , 2002, Trends in molecular medicine.

[29]  C. Thompson,et al.  Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis , 2002, Cell Death and Differentiation.

[30]  P. Hiesinger,et al.  Drosophila VAP-33A Directs Bouton Formation at Neuromuscular Junctions in a Dosage-Dependent Manner , 2002, Neuron.

[31]  D. Geschwind,et al.  Human Wild-Type Tau Interacts with wingless Pathway Components and Produces Neurofibrillary Pathology in Drosophila , 2002, Neuron.

[32]  Sangram S. Sisodia,et al.  γ-Secretase, notch, Aβ and alzheimer's disease: Where do the presenilins fit in? , 2002, Nature Reviews Neuroscience.

[33]  I. Grundke‐Iqbal,et al.  Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease , 2002, FEBS letters.

[34]  M. Fuller,et al.  Genetic analysis of dPsa, the Drosophila orthologue of puromycin-sensitive aminopeptidase, suggests redundancy of aminopeptidases , 2001, Development Genes and Evolution.

[35]  Károly Mirnics,et al.  Microarrays in brain research: the good, the bad and the ugly , 2001, Nature Reviews Neuroscience.

[36]  Irving L. Weissman,et al.  A Genetic Analysis of Neural Progenitor Differentiation , 2001, Neuron.

[37]  D. Geschwind,et al.  Mice, microarrays, and the genetic diversity of the brain. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  E. Wang,et al.  Rapid up-regulation of peptide elongation factor EF-1alpha protein levels is an immediate early event during oxidative stress-induced apoptosis. , 2000, Experimental cell research.

[39]  Wen-Lang Lin,et al.  Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein , 2000, Nature Genetics.

[40]  S. Korsmeyer,et al.  BCL-2 family members and the mitochondria in apoptosis. , 1999, Genes & development.

[41]  J. Ávila,et al.  Polymerization of tau peptides into fibrillar structures. The effect of FTDP‐17 mutations , 1999, FEBS letters.

[42]  C. Duijn,et al.  High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. , 1999, American journal of human genetics.

[43]  Iris Salecker,et al.  Polyglutamine-Expanded Human Huntingtin Transgenes Induce Degeneration of Drosophila Photoreceptor Neurons , 1998, Neuron.

[44]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[45]  E. Wang,et al.  Apoptosis rate can be accelerated or decelerated by overexpression or reduction of the level of elongation factor-1 alpha. , 1998, Experimental cell research.

[46]  D. Constam,et al.  Cloning of the Human Puromycin‐Sensitive Aminopeptidase and Evidence for Expression in Neurons , 1997, Journal of neurochemistry.

[47]  J. Kuret,et al.  The Structural Basis of Monoclonal Antibody Alz50's Selectivity for Alzheimer's Disease Pathology* , 1996, The Journal of Biological Chemistry.

[48]  I. Grundke‐Iqbal,et al.  Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in Alzheimer's disease , 1996, Nature Medicine.

[49]  Gerald M. Rubin,et al.  Drosophila homologs of baculovirus inhibitor of apoptosis proteins function to block cell death , 1995, Cell.

[50]  M. Mercken,et al.  Differential sensitivity to proteolysis by brain calpain of adult human tau, fetal human tau and PHF‐tau , 1995, FEBS letters.

[51]  L. Hersh,et al.  Degradation of Dynorphin‐Related Peptides by the Puromycin‐Sensitive Aminopeptidase and Aminopeptidase M , 1995, Journal of neurochemistry.

[52]  G. Huber,et al.  Purification and Characterization of a Novel Metalloprotease from Human Brain with the Ability to Cleave Substrates Derived from the N-Terminus of β-Amyloid Protein , 1994 .

[53]  E. Mandelkow,et al.  The switch of tau protein to an Alzheimer‐like state includes the phosphorylation of two serine‐proline motifs upstream of the microtubule binding region. , 1992, The EMBO journal.

[54]  J. Trojanowski,et al.  A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. , 1991, Science.

[55]  Khadija Iqbal,et al.  Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease , 1991, Brain Research.

[56]  P. Fisher,et al.  Interconversion of Drosophila nuclear lamin isoforms during oogenesis, early embryogenesis, and upon entry of cultured cells into mitosis , 1989, The Journal of cell biology.

[57]  R. Crowther,et al.  Cloning and sequencing of the cDNA encoding an isoform of microtubule‐associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. , 1989, The EMBO journal.

[58]  L. Hersh,et al.  Studies on the Tissue Distribution of the Puromycin‐Sensitive Enkephalin‐Degrading Aminopeptidases , 1988, Journal of neurochemistry.

[59]  J. Trojanowski,et al.  Epitopes that span the tau molecule are shared with paired helical filaments , 1988, Neuron.

[60]  K. White,et al.  The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. , 1988, Developmental biology.

[61]  H. Wiśniewski,et al.  Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Rubin,et al.  Transposition of cloned P elements into Drosophila germ line chromosomes. , 1982, Science.

[63]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[64]  I. Grundke‐Iqbal,et al.  Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease , 2008, Molecular Neurobiology.

[65]  M. Fortini,et al.  gamma-cleavage-independent functions of presenilin, nicastrin, and Aph-1 regulate cell-junction organization and prevent tau toxicity in vivo. , 2007, Neuron.

[66]  Y. Tu,et al.  Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival. , 2004, The Journal of biological chemistry.

[67]  P. S. St George-Hyslop,et al.  gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? , 2002, Nature reviews. Neuroscience.

[68]  J. Trojanowski,et al.  Neurodegenerative tauopathies. , 2001, Annual review of neuroscience.

[69]  D L Price,et al.  Alzheimer's disease: genetic studies and transgenic models. , 1998, Annual review of genetics.

[70]  M. Viitanen,et al.  Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type , 1993, Journal of neural transmission. Parkinson's disease and dementia section.

[71]  Rae Baxter,et al.  Acknowledgments.-The authors would like to , 1982 .