Geometry of Hamiltonian chaos.
暂无分享,去创建一个
[1] Paul Appell. Dynamique des systèmes : Mécanique analytique , 1953 .
[2] Eduard Zehnder,et al. Notes on Dynamical Systems , 2005 .
[3] L. Horwitz,et al. Classical mechanics of special relativity in a Riemannian space‐time , 1991 .
[4] Jorge V. José,et al. Chaos in classical and quantum mechanics , 1990 .
[5] D. Teychenné,et al. Controlling Hamiltonian chaos via Gaussian curvature. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[6] Clementi,et al. Riemannian theory of Hamiltonian chaos and Lyapunov exponents. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[8] C. Clementi,et al. GEOMETRY OF DYNAMICS, LYAPUNOV EXPONENTS, AND PHASE TRANSITIONS , 1997, chao-dyn/9702011.
[9] J. Hadamard,et al. Les surfaces a courbures opposees et leurs lignes geodesique , 1898 .
[10] Casetti,et al. Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[11] F. R. Miller,et al. Differential manifolds and theoretical physics , 1985 .
[12] C. Jacobi,et al. Vorlesungen über dynamik , 1866 .
[13] Szydlowski,et al. Invariant chaos in mixmaster cosmology. , 1994, Physical review. D, Particles and fields.