Geometry of Hamiltonian chaos.

The characterization of chaotic Hamiltonian systems in terms of the curvature associated with a Riemannian metric tensor in the structure of the Hamiltonian is extended to a wide class of potential models of standard form through definition of a conformal metric. The geodesic equations reproduce the Hamilton equations of the original potential model when a transition is made to an associated manifold. We find, in this way, a direct geometrical description of the time development of a Hamiltonian potential model. The second covariant derivative of the geodesic deviation in this associated manifold results in (energy dependent) criteria for unstable behavior different from the usual Lyapunov criteria. We discuss some examples of unstable Hamiltonian systems in two dimensions.

[1]  Paul Appell Dynamique des systèmes : Mécanique analytique , 1953 .

[2]  Eduard Zehnder,et al.  Notes on Dynamical Systems , 2005 .

[3]  L. Horwitz,et al.  Classical mechanics of special relativity in a Riemannian space‐time , 1991 .

[4]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[5]  D. Teychenné,et al.  Controlling Hamiltonian chaos via Gaussian curvature. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Clementi,et al.  Riemannian theory of Hamiltonian chaos and Lyapunov exponents. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[8]  C. Clementi,et al.  GEOMETRY OF DYNAMICS, LYAPUNOV EXPONENTS, AND PHASE TRANSITIONS , 1997, chao-dyn/9702011.

[9]  J. Hadamard,et al.  Les surfaces a courbures opposees et leurs lignes geodesique , 1898 .

[10]  Casetti,et al.  Analytic computation of the strong stochasticity threshold in Hamiltonian dynamics using Riemannian geometry. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  F. R. Miller,et al.  Differential manifolds and theoretical physics , 1985 .

[12]  C. Jacobi,et al.  Vorlesungen über dynamik , 1866 .

[13]  Szydlowski,et al.  Invariant chaos in mixmaster cosmology. , 1994, Physical review. D, Particles and fields.