Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit
暂无分享,去创建一个
J. Fraser Stoddart | Julie Perkins | Jan Becher | J. F. Stoddart | J. Perkins | J. O. Jeppesen | J. Becher | Jan O. Jeppesen | J. Stoddart | J. Jeppesen | Julie Perkins
[1] D. Macartney,et al. Kinetic and Spectroscopic Studies on α-Cyclodextrin Rotaxanes with Pentacyano(cyanopyridinium)ferrate(II) Stoppers , 1997 .
[2] D. H. Busch,et al. Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis , 1995 .
[3] Douglas Philp,et al. SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .
[4] Joachim,et al. Rotation of a single molecule within a supramolecular bearing , 1998, Science.
[5] M. Nielsen,et al. Synthesis of a criss-cross overlapped tetrathiafulvalenophane and a topologically new [2]catenane , 1998 .
[6] J. F. Stoddart,et al. Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .
[7] Fritz Vögtle,et al. EINE NEUE SYNTHESESTRATEGIE FUR MOLEKULE MIT MECHANISCHEN BINDUNGEN : NICHTIONISCHE TEMPLATSYNTHESE AMIDVERKNUPFTER CATENANE UND ROTAXANE , 1997 .
[8] H. Anderson,et al. An approach to insulated molecular wires: synthesis of water-soluble conjugated rotaxanes , 1998 .
[9] David J. Williams,et al. IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .
[10] David J. Williams,et al. Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .
[11] Jonathan S. Lindsey,et al. Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .
[12] J. F. Stoddart,et al. A chemically and electrochemically switchable molecular shuttle , 1994, Nature.
[13] D. H. Busch,et al. Template routes to interlocked molecular structures and orderly molecular entanglements , 2000 .
[14] M. Nielsen,et al. Tetrathiafulvalenes as building blocks in supramolecular chemistry II , 2010 .
[15] Jan Becher,et al. Durch Selbstorganisation zu nicht trans/cis‐isomerisierenden Tetrathiafulvalen‐haltigen [3]Pseudocatenanen , 1995 .
[16] H. Gibson,et al. Polyrotaxanes: Molecular composites derived by physical linkage of cyclic and linear species , 1993 .
[17] J. Fraser Stoddart,et al. Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions , 2000 .
[18] Stoddart,et al. Electronically configurable molecular-based logic gates , 1999, Science.
[19] Zhan-Ting Li,et al. Configurationally selective self-assembly of a cis-[3]pseudocatenane incorporating three tetrathiafulvalene units , 1996 .
[20] J. F. Stoddart,et al. A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .
[21] David A. Leigh,et al. Peptide-Based Molecular Shuttles , 1997 .
[22] M. Nielsen,et al. Bis(pyrrolo)tetrathiafulvalene – An Efficient π‐Donor in Supramolecular Chemistry , 1999 .
[23] J. Fraser Stoddart,et al. Künstliche molekulare Maschinen , 2000 .
[24] Richard A. Silva,et al. Unidirectional rotary motion in a molecular system , 1999, Nature.
[25] Richard A. Silva,et al. A Rationally Designed Prototype of a Molecular Motor. , 2000, Journal of the American Chemical Society.
[26] Maurizio Licchelli,et al. Transition Metals as Switches , 1999 .
[27] J. Rebek. Reversible Encapsulation and Its Consequences in Solution , 1999 .
[28] Fritz Vögtle,et al. A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .
[29] M. Bryce. Current trends in tetrathiafulvalene chemistry: towards increased dimensionality , 1995 .
[30] David J. Williams,et al. Self‐assembling [2]‐ and [3]Rotaxanes from Secondary Dialkylammonium Salts and Crown Ethers , 1996 .
[31] Angel E. Kaifer,et al. Effects of Side Arm Length and Structure of Para-Substituted Phenyl Derivatives on Their Binding to the Host Cyclobis(paraquat-p-phenylene). , 1996, The Journal of organic chemistry.
[32] A. Troisi,et al. Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.
[33] David J. Williams,et al. Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .
[34] Jean-Pierre Sauvage,et al. Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .
[35] Becher,et al. Pyrrolo-annelated tetrathiafulvalenes: the parent systems , 2000, The Journal of organic chemistry.
[36] Stoddart,et al. Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.
[37] Interplay between Molecular Recognition and Redox Chemistry , 1999 .
[38] David J. Williams,et al. A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. , 1998, Angewandte Chemie.
[39] Douglas Philp,et al. Self-Assembly in Organic Synthesis , 1992 .
[40] David J. Williams,et al. Toward Controllable Molecular Shuttles , 1997 .
[41] J. Fraser Stoddart,et al. Towards Controllable Molecular Shuttles - 3 , 1992 .
[42] David J. Williams,et al. Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene , 1999 .
[43] Zhan-Ting Li,et al. Synthesis of Novel Tetrathiafulvalene‐Based [3]Pseudocatenanes by Self‐Assembly; Prevention of trans/cis Isomerization , 1995 .
[44] Stoddart,et al. Self-assembly of an amphiphilic , 2000, Organic letters.
[45] Dress,et al. A photochemically driven molecular-level abacus , 2000, Chemistry.
[46] David J. Williams,et al. Ein molekulares Chamäleon: ein selbstkomplexierendes molekulares Aggregat als chromophorer Sensor , 1998 .
[47] J Fraser Stoddart,et al. A molecular shuttle. , 1991, Journal of the American Chemical Society.
[48] David J. Williams,et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .
[49] David J. Williams,et al. The complexation of tetrathiafulvalene by cyclobis(Paraquat-p-phenylene) , 1991 .
[50] J. Becher,et al. A copper(I) [2]-catenate incorporating a tetrathiafulvalene unit , 1994 .
[51] J. F. Stoddart,et al. Self-assembling cyclobis(paraquat-4,4'-biphenylene) , 1996 .
[52] N. Harada,et al. Light-driven monodirectional molecular rotor , 2022 .
[53] J. Fraser Stoddart,et al. Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system , 2001 .
[54] J. Garı́n,et al. The Reactivity of Tetrathia- and Tetraselenafulvalenes* , 1995 .
[55] Zhan-Ting Li,et al. Self‐assembling Tetrathiafulvalene‐based Rotaxanes and Catenanes , 1996 .
[56] J. Fraser Stoddart,et al. Simple molecular-level machines. Interchange between different threads in pseudorotaxanes , 1998 .
[57] Stoddart,et al. Artificial Molecular Machines. , 2000, Angewandte Chemie.
[58] D. H. Busch,et al. Molecular organization, portal to supramolecular chemistry: Structural analysis of the factors associated with molecular organization in coordination and inclusion chemistry, including the coordination template effect , 1990 .
[59] E. Levillain,et al. Synthesis of linear oligo-TTFs and their [2]rotaxanes , 2000 .
[60] J. F. Stoddart,et al. Interlocked and Intertwined Structures and Superstructures , 1996 .
[61] Harry L. Anderson,et al. Expanding roles for templates in synthesis , 1993 .
[62] Leonid M. Goldenberg,et al. A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .
[63] Vincenzo Balzani,et al. A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.
[64] J. Fraser Stoddart,et al. The art and science of self-assembling molecular machines , 1996 .
[65] M. Bryce. Functionalised tetrathiafulvalenes: new applications as versatile π-electron systems in materials chemistry , 2000 .
[66] Masahiro Higuchi,et al. Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .
[67] Ben L. Feringa,et al. Chiroptical Molecular Switches. , 2000, Chemical reviews.
[68] Zhan-Ting Li,et al. Tetrathiafulvalenophanes and theircatenanes , 1997 .
[69] K. Müllen,et al. Oligomeric Tetrathiafulvalenes: Extended donors for increasing the dimensionality of electrical conduction , 1994 .
[70] G. Whitesides,et al. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.
[71] J. Fraser Stoddart,et al. SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .
[72] V. Rotello,et al. From Enzyme to Molecular Device. Exploring the Interdependence of Redox and Molecular Recognition , 1999 .
[73] Jean-Pierre Sauvage,et al. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .
[74] J. Sauvage,et al. Mehrkomponenten-Molekülsysteme aus Porphyrinen und Kupfer(I)-Komplexen: simultane Synthese von [3]- und [5]Rotaxanen† , 1996 .
[75] J. Fraser Stoddart,et al. Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .
[76] C. Dietrich-Buchecker,et al. Multicomponent Molecular Systems Incorporating Porphyrins and Copper(I) Complexes: Simultaneous Synthesis of [3]‐ and [5]Rotaxanes , 1996 .