Slow shuttling in an amphiphilic bistable [2]rotaxane incorporating a tetrathiafulvalene unit

[1]  D. Macartney,et al.  Kinetic and Spectroscopic Studies on α-Cyclodextrin Rotaxanes with Pentacyano(cyanopyridinium)ferrate(II) Stoppers , 1997 .

[2]  D. H. Busch,et al.  Gaining control over molecular threading: benefits of second coordination sites and aqueous–organic interfaces in rotaxane synthesis , 1995 .

[3]  Douglas Philp,et al.  SELBSTORGANISATION IN NATURLICHEN UND IN NICHTNATURLICHEN SYSTEMEN , 1996 .

[4]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[5]  M. Nielsen,et al.  Synthesis of a criss-cross overlapped tetrathiafulvalenophane and a topologically new [2]catenane , 1998 .

[6]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[7]  Fritz Vögtle,et al.  EINE NEUE SYNTHESESTRATEGIE FUR MOLEKULE MIT MECHANISCHEN BINDUNGEN : NICHTIONISCHE TEMPLATSYNTHESE AMIDVERKNUPFTER CATENANE UND ROTAXANE , 1997 .

[8]  H. Anderson,et al.  An approach to insulated molecular wires: synthesis of water-soluble conjugated rotaxanes , 1998 .

[9]  David J. Williams,et al.  IMPROVED TEMPLATE-DIRECTED SYNTHESIS OF CYCLOBIS(PARAQUAT-P-PHENYLENE) , 1996 .

[10]  David J. Williams,et al.  Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes , 1997 .

[11]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[12]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[13]  D. H. Busch,et al.  Template routes to interlocked molecular structures and orderly molecular entanglements , 2000 .

[14]  M. Nielsen,et al.  Tetrathiafulvalenes as building blocks in supramolecular chemistry II , 2010 .

[15]  Jan Becher,et al.  Durch Selbstorganisation zu nicht trans/cis‐isomerisierenden Tetrathiafulvalen‐haltigen [3]Pseudocatenanen , 1995 .

[16]  H. Gibson,et al.  Polyrotaxanes: Molecular composites derived by physical linkage of cyclic and linear species , 1993 .

[17]  J. Fraser Stoddart,et al.  Fabrication and Transport Properties of Single-Molecule-Thick Electrochemical Junctions , 2000 .

[18]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[19]  Zhan-Ting Li,et al.  Configurationally selective self-assembly of a cis-[3]pseudocatenane incorporating three tetrathiafulvalene units , 1996 .

[20]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[21]  David A. Leigh,et al.  Peptide-Based Molecular Shuttles , 1997 .

[22]  M. Nielsen,et al.  Bis(pyrrolo)tetrathiafulvalene – An Efficient π‐Donor in Supramolecular Chemistry , 1999 .

[23]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[24]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[25]  Richard A. Silva,et al.  A Rationally Designed Prototype of a Molecular Motor. , 2000, Journal of the American Chemical Society.

[26]  Maurizio Licchelli,et al.  Transition Metals as Switches , 1999 .

[27]  J. Rebek Reversible Encapsulation and Its Consequences in Solution , 1999 .

[28]  Fritz Vögtle,et al.  A New Synthetic Strategy towards Molecules with Mechanical Bonds: Nonionic Template Synthesis of Amide-Linked Catenanes and Rotaxanes , 1997 .

[29]  M. Bryce Current trends in tetrathiafulvalene chemistry: towards increased dimensionality , 1995 .

[30]  David J. Williams,et al.  Self‐assembling [2]‐ and [3]Rotaxanes from Secondary Dialkylammonium Salts and Crown Ethers , 1996 .

[31]  Angel E. Kaifer,et al.  Effects of Side Arm Length and Structure of Para-Substituted Phenyl Derivatives on Their Binding to the Host Cyclobis(paraquat-p-phenylene). , 1996, The Journal of organic chemistry.

[32]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[33]  David J. Williams,et al.  Ein chemisch und elektrochemisch schaltbares [2]Catenan mit Tetrathiafulvalen‐Einheit , 1998 .

[34]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[35]  Becher,et al.  Pyrrolo-annelated tetrathiafulvalenes: the parent systems , 2000, The Journal of organic chemistry.

[36]  Stoddart,et al.  Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs , 2000, The Journal of organic chemistry.

[37]  Interplay between Molecular Recognition and Redox Chemistry , 1999 .

[38]  David J. Williams,et al.  A Molecular Chameleon: Chromophoric Sensing by a Self-Complexing Molecular Assembly. , 1998, Angewandte Chemie.

[39]  Douglas Philp,et al.  Self-Assembly in Organic Synthesis , 1992 .

[40]  David J. Williams,et al.  Toward Controllable Molecular Shuttles , 1997 .

[41]  J. Fraser Stoddart,et al.  Towards Controllable Molecular Shuttles - 3 , 1992 .

[42]  David J. Williams,et al.  Pseudorotaxanes and Catenanes Containing a Redox‐Active Unit Derived from Tetrathiafulvalene , 1999 .

[43]  Zhan-Ting Li,et al.  Synthesis of Novel Tetrathiafulvalene‐Based [3]Pseudocatenanes by Self‐Assembly; Prevention of trans/cis Isomerization , 1995 .

[44]  Stoddart,et al.  Self-assembly of an amphiphilic , 2000, Organic letters.

[45]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[46]  David J. Williams,et al.  Ein molekulares Chamäleon: ein selbstkomplexierendes molekulares Aggregat als chromophorer Sensor , 1998 .

[47]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[48]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[49]  David J. Williams,et al.  The complexation of tetrathiafulvalene by cyclobis(Paraquat-p-phenylene) , 1991 .

[50]  J. Becher,et al.  A copper(I) [2]-catenate incorporating a tetrathiafulvalene unit , 1994 .

[51]  J. F. Stoddart,et al.  Self-assembling cyclobis(paraquat-4,4'-biphenylene) , 1996 .

[52]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[53]  J. Fraser Stoddart,et al.  Controlled dethreading/rethreading of a scorpion-like pseudorotaxane and a related macrobicyclic self-complexing system , 2001 .

[54]  J. Garı́n,et al.  The Reactivity of Tetrathia- and Tetraselenafulvalenes* , 1995 .

[55]  Zhan-Ting Li,et al.  Self‐assembling Tetrathiafulvalene‐based Rotaxanes and Catenanes , 1996 .

[56]  J. Fraser Stoddart,et al.  Simple molecular-level machines. Interchange between different threads in pseudorotaxanes , 1998 .

[57]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[58]  D. H. Busch,et al.  Molecular organization, portal to supramolecular chemistry: Structural analysis of the factors associated with molecular organization in coordination and inclusion chemistry, including the coordination template effect , 1990 .

[59]  E. Levillain,et al.  Synthesis of linear oligo-TTFs and their [2]rotaxanes , 2000 .

[60]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[61]  Harry L. Anderson,et al.  Expanding roles for templates in synthesis , 1993 .

[62]  Leonid M. Goldenberg,et al.  A Redox-Active Tetrathiafulvalene [2]Pseudorotaxane: Spectroelectrochemical and Cyclic Voltammetric Studies of the Highly-Reversible Complexation/Decomplexation Process , 1997 .

[63]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[64]  J. Fraser Stoddart,et al.  The art and science of self-assembling molecular machines , 1996 .

[65]  M. Bryce Functionalised tetrathiafulvalenes: new applications as versatile π-electron systems in materials chemistry , 2000 .

[66]  Masahiro Higuchi,et al.  Current/Voltage Characteristics of Monolayers of Redox‐Switchable [2]Catenanes on Gold , 2000 .

[67]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[68]  Zhan-Ting Li,et al.  Tetrathiafulvalenophanes and theircatenanes , 1997 .

[69]  K. Müllen,et al.  Oligomeric Tetrathiafulvalenes: Extended donors for increasing the dimensionality of electrical conduction , 1994 .

[70]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[71]  J. Fraser Stoddart,et al.  SYNTHETIC SUPRAMOLECULAR CHEMISTRY , 1997 .

[72]  V. Rotello,et al.  From Enzyme to Molecular Device. Exploring the Interdependence of Redox and Molecular Recognition , 1999 .

[73]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .

[74]  J. Sauvage,et al.  Mehrkomponenten-Molekülsysteme aus Porphyrinen und Kupfer(I)-Komplexen: simultane Synthese von [3]- und [5]Rotaxanen† , 1996 .

[75]  J. Fraser Stoddart,et al.  Electrochemically Induced Molecular Motions in Pseudorotaxanes: A Case of Dual‐Mode (Oxidative and Reductive) Dethreading , 1997 .

[76]  C. Dietrich-Buchecker,et al.  Multicomponent Molecular Systems Incorporating Porphyrins and Copper(I) Complexes: Simultaneous Synthesis of [3]‐ and [5]Rotaxanes , 1996 .