Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

Abstract In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy

[1]  N. Andreev,et al.  Semi-empirical model for permittivity of warm dense matter , 2015 .

[2]  K. Khishchenko,et al.  Thermal conductivity of condensed gold in states with the strongly excited electron subsystem , 2015 .

[3]  R. Stoian,et al.  Ultrafast switching of surface plasmonic conditions in nonplasmonic metals , 2015, 1509.03182.

[4]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[5]  Leonid V. Zhigilei,et al.  Metal ablation by picosecond laser pulses: A hybrid simulation , 2002 .

[6]  S. Anisimov,et al.  Electron emission from metal surfaces exposed to ultrashort laser pulses , 1974 .

[7]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[8]  S. L. Daraszewicz,et al.  Dynamical simulations of an electronically induced solid-solid phase transformation in tungsten , 2015 .

[9]  Y. Gusev,et al.  Calorific properties of liquid copper , 2000 .

[10]  Michael Schmidt,et al.  Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation. , 2016, Optics express.

[11]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[12]  Y. Petrov,et al.  Equations of state, energy transport and two-temperature hydrodynamic simulations for femtosecond laser irradiated copper and gold , 2015 .

[13]  Freeman,et al.  Resistivity of a simple metal from room temperature to 106 K. , 1988, Physical review letters.

[14]  Yu. V. Petrov,et al.  Two-temperature relaxation and melting after absorption of femtosecond laser pulse , 2008, 0812.2965.

[15]  Yu. V. Petrov,et al.  Thermal conductivity and the electron-ion heat transfer coefficient in condensed media with a strongly excited electron subsystem , 2013 .

[16]  P. Levashov,et al.  A wide-range model for simulation of pump-probe experiments with metals , 2011 .

[17]  G. Eesley,et al.  Generation of nonequilibrium electron and lattice temperatures in copper by picosecond laser pulses. , 1986, Physical review. B, Condensed matter.

[18]  R. A. Matula Electrical resistivity of copper, gold, palladium, and silver , 1979 .

[19]  Stylianos Tzortzakis,et al.  Nonequilibrium electron dynamics in noble metals , 2000 .

[20]  S. Nolte,et al.  Heat accumulation in ultra-short pulsed scanning laser ablation of metals. , 2015, Optics express.

[21]  Martins,et al.  Energy versus free-energy conservation in first-principles molecular dynamics. , 1992, Physical review. B, Condensed matter.

[22]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[23]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[24]  J. Limpert,et al.  High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. , 2008, Optics express.

[25]  Yukta Timalsina,et al.  Evidence of enhanced electron-phonon coupling in ultrathin epitaxial copper films , 2013 .

[26]  P. Combis,et al.  Transient optical response of ultrafast nonequilibrium excited metals: effects of electron-electron contribution to collisional absorption. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Baerbel Rethfeld,et al.  Theory of ultrashort laser pulse interaction with a metal , 1997, Other Conferences.

[28]  Pavel R. Levashov,et al.  Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses , 2007 .

[29]  Sun,et al.  Femtosecond investigation of electron thermalization in gold. , 1993, Physical review. B, Condensed matter.

[30]  Ralph Baierlein,et al.  The elusive chemical potential , 2001 .

[31]  E. Campbell,et al.  A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion , 2005 .

[32]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[33]  R. Stoian,et al.  First-principles calculations of heat capacities of ultrafast laser-excited electrons in metals , 2015, 1503.06943.

[34]  Yunpeng Ren,et al.  Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers , 2011 .

[35]  S. Eliezer,et al.  Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  C. Kittel Introduction to solid state physics , 1954 .

[37]  Klaus Sokolowski-Tinten,et al.  The physical mechanisms of short-pulse laser ablation , 2000 .

[38]  G. Cook,et al.  Understanding the chemical potential , 1995 .

[39]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[40]  Allen,et al.  Theory of thermal relaxation of electrons in metals. , 1987, Physical review letters.

[41]  D. Cahill,et al.  Nonlinear energy absorption of femtosecond laser pulses in noble metals , 2009 .

[42]  J. K. Chen,et al.  A semiclassical two-temperature model for ultrafast laser heating , 2006 .

[43]  Yukta Timalsina,et al.  Experimental study of electron-phonon coupling and electron internal thermalization in epitaxially grown ultrathin copper films , 2015 .

[44]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[45]  Leonid V. Zhigilei,et al.  Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films , 2003 .

[46]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[47]  Laurent J. Lewis,et al.  Molecular-dynamics study of ablation of solids under femtosecond laser pulses , 2003 .

[48]  Sun,et al.  Femtosecond-tunable measurement of electron thermalization in gold. , 1994, Physical review. B, Condensed matter.

[49]  J. Liu Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.

[50]  J. Güdde,et al.  Electron and lattice dynamics following optical excitation of metals , 2000 .

[51]  R W Falcone,et al.  Measurement of Electron-Ion Relaxation in Warm Dense Copper , 2016, Scientific Reports.

[52]  Günther Paltauf,et al.  Photomechanical processes and effects in ablation. , 2003, Chemical reviews.

[53]  Robert Fedosejevs,et al.  Experimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targets , 2009 .

[54]  Chunlei Guo,et al.  Enhanced absorptance of gold following multipulse femtosecond laser ablation , 2005 .

[55]  J. K. Chen,et al.  Modeling of femtosecond laser-induced non-equilibrium deformation in metal films , 2002 .

[56]  Cheng,et al.  Femtosecond room-temperature measurement of the electron-phonon coupling constant gamma in metallic superconductors. , 1990, Physical review letters.

[57]  Downer,et al.  Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. , 1994, Physical review. B, Condensed matter.

[58]  Yu. V. Petrov,et al.  Thermal conductivity of metals with hot electrons , 2010 .

[59]  H. J. Lee,et al.  Electronic structure of warm dense copper studied by ultrafast x-ray absorption spectroscopy. , 2011, Physical review letters.

[60]  H. Fujiwara,et al.  Spectroscopic Ellipsometry: Principles and Applications , 2007 .

[61]  R. M. More,et al.  INTERACTION OF FEMTOSECOND LASER PULSES WITH ULTRATHIN FOILS , 1998 .

[62]  Matthias Domke,et al.  Numerical simulation of ultrafast expansion as the driving mechanism for confined laser ablation with ultra-short laser pulses , 2013 .

[63]  M. Fox Optical Properties of Solids , 2010 .

[64]  P. Winsemius,et al.  Temperature dependence of the optical properties of Au, Ag and Cu , 1976 .

[65]  G. Grimvall The Electron-Phonon Interaction in Normal Metals , 1976 .

[66]  G. P. Pells,et al.  The optical properties of copper and gold as a function of temperature , 1969 .

[67]  Razvan Stoian,et al.  Free electron properties of metals under ultrafast laser-induced electron-phonon nonequilibrium: a first-principles study , 2014, 1403.5117.

[68]  G Zérah,et al.  Effect of intense laser irradiation on the lattice stability of semiconductors and metals. , 2006, Physical review letters.

[69]  Yurii V. Petrov,et al.  Kinetic coefficients for d-band metals in two-temperature states created by femtosecond laser irradiation , 2013, Fundamentals of Laser Assisted Micro- and Nanotechnologies.

[70]  P. A. Loboda,et al.  Simulation of absorption of femtosecond laser pulses in solid-density copper , 2011 .

[71]  R. Stoian,et al.  Ultrafast destructuring of laser-irradiated tungsten: Thermal or nonthermal process , 2016 .

[72]  J. P. Callan,et al.  Femtosecond time-resolved dielectric function measurements by dual-angle reflectometry , 2003 .