Surveys, Astrometric Follow-Up, and Population Statistics

Jet Propulsion Laboratory Asteroid surveys are the backbone of asteroid science, and with this in mind we begin with a broad review of the impact of asteroid surveys on our field. We then provide a brief history of asteroid discoveries so as to place contemporary and future surveys in perspective. Surveys in the United States (U.S.) have discovered the vast majority of the asteroids, and this dominance has been consolidated since the publication of Asteroids III. Our descriptions of the asteroid surveys that have been operational since that time are focused on those that have contributed the vast majority of asteroid observations and discoveries. We also provide some insight into upcoming next-generation surveys that are sure to alter our understanding of the small bodies in the inner solar system and provide evidence to untangle their complicated dynamical and physical histories. The Minor Planet Center, the nerve center of the asteroid discovery effort, has improved its operations significantly in the past decade so that it can manage the increasing discovery rate, and ensure that it is well-placed to handle the data rates expected in the next decade. We also consider the difficulties associated with astrometric follow-up of newly identified objects. It seems clear that both of these efforts must operate in new modes in order to keep pace with expected discovery rates of next-generation ground- and spacebased surveys.

[1]  R. Wainscoat,et al.  The Pan-STARRS search for Near Earth Objects , 2014, 2016 IEEE Aerospace Conference.

[2]  W. Burgett,et al.  Observational Constraints on the Catastrophic Disruption Rate of Small Main Belt Asteroids , 2014, 1408.6807.

[3]  E. Beshore,et al.  Unbiased dynamical and physical characteristics of the near-Earth-object population , 2014 .

[4]  Detlef Koschny,et al.  An ESA NEOCC Effort to Eliminate High Palermo Scale Virtual Impactors , 2014 .

[5]  J. Masiero,et al.  MAIN-BELT ASTEROIDS WITH WISE/NEOWISE: NEAR-INFRARED ALBEDOS , 2014, 1406.6645.

[6]  T. Grav,et al.  INITIAL PERFORMANCE OF THE NEOWISE REACTIVATION MISSION , 2014, 1406.6025.

[7]  Robert Jedicke,et al.  Detecting Earth’s temporarily-captured natural satellites—Minimoons , 2014, 1406.3534.

[8]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[9]  R. de la Fuente Marcos,et al.  Asteroid 2013 ND15: Trojan companion to Venus, PHA to the Earth , 2014, 1401.5013.

[10]  G. Hallinan,et al.  FINDING VERY SMALL NEAR-EARTH ASTEROIDS USING SYNTHETIC TRACKING , 2013, 1309.3248.

[11]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[12]  J. Bauer,et al.  2009 BD as a Candidate for an Asteroid Retrieval Mission , 2013 .

[13]  Clement G. Lee,et al.  Goldstone Radar Images of Near-Earth Asteroid 2012 DA14 , 2013 .

[14]  J. Takahashi,et al.  HIGH ECLIPTIC LATITUDE SURVEY FOR SMALL MAIN-BELT ASTEROIDS , 2013, 1308.3349.

[15]  Sarah Greenstreet,et al.  HIGH-INCLINATION ATENS ARE INDEED RARE , 2013 .

[16]  A. Christou Orbital clustering of martian Trojans: An asteroid family in the inner Solar System? , 2013, 1303.0420.

[17]  R. D. L. F. Marcos,et al.  Three new stable L5 Mars Trojans , 2013, 1303.0124.

[18]  D. J. Tholen,et al.  Yarkovsky-driven impact risk analysis for asteroid (99942) Apophis , 2013, 1301.1607.

[19]  Paolo Tanga,et al.  Asteroid spectroscopy with Gaia , 2012 .

[20]  R. Wainscoat,et al.  The Pan-STARRS1 Search for Near Earth Objects: Recent Progress and Future Plans , 2012 .

[21]  A. Harris The Value Of Enhanced Neo Surveys , 2012 .

[22]  Amy K. Mainzer,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY , 2012, 1209.1549.

[23]  Deborah F. Woods,et al.  Rapid Cadence Collections with the Space Surveillance Telescope , 2012 .

[24]  T. Grav,et al.  CHARACTERIZING SUBPOPULATIONS WITHIN THE NEAR-EARTH OBJECTS WITH NEOWISE: PRELIMINARY RESULTS , 2012, 1205.3568.

[25]  M. Granvik,et al.  PRODUCTION OF NEAR-EARTH ASTEROIDS ON RETROGRADE ORBITS , 2012 .

[26]  Dominic J. Benford,et al.  Explanatory Supplement to the WISE All-Sky Data Release Products , 2012, WISE 2012.

[27]  Larry Denneau,et al.  Identification of known objects in Solar System surveys , 2012, 1201.2587.

[28]  R. Jedicke,et al.  The population of natural Earth satellites , 2011, 1112.3781.

[29]  B. Gladman,et al.  The orbital distribution of Near-Earth Objects inside Earth's orbit , 2012 .

[30]  M. Chiarini,et al.  Wide Eye Debris telescope allows to catalogue objects in any orbital zone . , 2012 .

[31]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[32]  T. Grav,et al.  WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJANS: PRELIMINARY RESULTS , 2011, 1110.0280.

[33]  E. Ofek,et al.  Asteroid Science with the Palomar Transient Factory Survey , 2011 .

[34]  E. L. Wright,et al.  NEOWISE OBSERVATIONS OF NEAR-EARTH OBJECTS: PRELIMINARY RESULTS , 2011, 1109.6400.

[35]  Martin Connors,et al.  Earth’s Trojan asteroid , 2011, Nature.

[36]  Larry Denneau,et al.  The Pan-STARRS Synthetic Solar System Model: A Tool for Testing and Efficiency Determination of the Moving Object Processing System , 2011 .

[37]  E. L. Wright,et al.  PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE , 2011, 1102.1996.

[38]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[39]  D. Jewitt,et al.  A recent disruption of the main-belt asteroid P/2010 A2 , 2010, Nature.

[40]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[41]  Y. Krugly,et al.  ISON Near-Earth asteroids project , 2010 .

[42]  Robert Jedicke,et al.  On the asteroid belt's orbital and size distribution , 2009 .

[43]  S. N. Milam,et al.  The impact and recovery of asteroid 2008 TC3 , 2009, Nature.

[44]  M. Still,et al.  Photometry of 2006 RH120: an asteroid temporary captured into a geocentric orbit , 2009 .

[45]  Larry Denneau,et al.  Detection of Earth-impacting asteroids with the next generation all-sky surveys , 2009, 0905.3685.

[46]  Robert Jedicke,et al.  The orbit and size distribution of small Solar System objects orbiting the Sun interior to the Earth's orbit , 2008 .

[47]  Alan Harris,et al.  What Spaceguard did , 2008, Nature.

[48]  David Vokrouhlický,et al.  PAIRS OF ASTEROIDS PROBABLY OF A COMMON ORIGIN , 2008 .

[49]  M. Granvik,et al.  The Gaia Mission: Expected Applications to Asteroid Science , 2007 .

[50]  A. Harris,et al.  An Update of the Population of NEAs and Impact Risk , 2007 .

[51]  Ulrich Bastian,et al.  The Gaia mission: science, organization and present status , 2007, Proceedings of the International Astronomical Union.

[52]  A. Moore,et al.  Efficient intra- and inter-night linking of asteroid detections using kd-trees , 2007, astro-ph/0703475.

[53]  Z. Ivezic,et al.  The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalogue 3 , 2007, astro-ph/0703026.

[54]  D. Vokrouhlický,et al.  The Breakup of a Main-Belt Asteroid 450 Thousand Years Ago , 2006, Science.

[55]  Alessandro Morbidelli,et al.  Yarkovsky/YORP chronology of asteroid families , 2006 .

[56]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[57]  Nick Kaiser,et al.  The Pan-STARRS PS1 Image Processing Pipeline , 2006 .

[58]  Sean G. Ryan,et al.  The Advanced Maui Optical and Space Surveillance Technologies Conference , 2006 .

[59]  Fumi Yoshida,et al.  Size Distribution of Faint Jovian L4 Trojan Asteroids , 2005 .

[60]  Larry Denneau,et al.  The Pan-STARRS Moving Object Processing System , 2013, 1302.7281.

[61]  R. Greenberg,et al.  The collisional and dynamical evolution of the main-belt and NEA size distributions , 2005 .

[62]  Alberto Cellino,et al.  The Statistical Asteroid Model. I. The Main-Belt Population for Diameters Greater than 1 Kilometer , 2005 .

[63]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[64]  S. Chesley,et al.  Nonlinear impact monitoring: line of variation searches for impactors , 2005 .

[65]  Richard P. Binzel,et al.  Bias-corrected population, size distribution, and impact hazard for the near-Earth objects , 2004 .

[66]  Steven R. Chesley,et al.  Mitigation of Hazardous Comets and Asteroids: Earth impactors: orbital characteristics and warning times , 2004 .

[67]  Jon D. Giorgini,et al.  The role of radar in predicting and preventing asteroid and comet collisions with Earth , 2004 .

[68]  Robert Jedicke,et al.  Earth and space-based NEO survey simulations: prospects for achieving the Spaceguard Goal , 2003 .

[69]  Daisuke Kinoshita,et al.  Size and Spatial Distributions of Sub-km Main-Belt Asteroids ∗ , 2003 .

[70]  Robert Jedicke,et al.  Pan-STARRS: A Large Synoptic Survey Telescope Array , 2002, SPIE Astronomical Telescopes + Instrumentation.

[71]  S. P. Worden,et al.  The flux of small near-Earth objects colliding with the Earth , 2002, Nature.

[72]  J. Tichá,et al.  The recovery as an important part of NEA astrometric follow-up , 2002 .

[73]  E. Ryan,et al.  Magdalena Ridge Observatory (MRO) as a Tool for Asteroid Science , 2002 .

[74]  R. Jedicke,et al.  Debiased Orbital and Absolute Magnitude Distribution of the Near-Earth Objects , 2002 .

[75]  S. Larson,et al.  Near-Earth Asteroid Search Programs , 2002 .

[76]  Robert Jedicke,et al.  Observational Selection Effects in Asteroid Surveys , 2002 .

[77]  J. S. Stuart,et al.  A Near-Earth Asteroid Population Estimate from the LINEAR Survey , 2001, Science.

[78]  F. Shelly,et al.  Lincoln Near-Earth Asteroid Program (LINEAR) , 2000 .

[79]  S. Chesley,et al.  Asteroid close encounters with Earth: risk assessment , 2000 .

[80]  T. B. Spahr,et al.  The Catalina Sky Survey for NEOs , 1998 .

[81]  K. Muinonen,et al.  The Lowell Observatory Near-Earth-Object Search: A Progress Report , 1995 .

[82]  K. Muinonen,et al.  Earth-crossing Asteroids and Comets: Groundbased Search Strategies , 1994 .

[83]  T. Spahr,et al.  High Ecliptic Latitude Asteroid and Comet Search , 1993 .

[84]  D. Morrison The Spaceguard Survey: Report of the NASA International Near-Earth-Object Detection Workshop , 1992 .

[85]  D. L. Rabinowitz,et al.  Detection of earth-approaching asteroids in near real time , 1991 .

[86]  C. Cunningham Introduction to Asteroids: The Next Frontier , 1988 .

[87]  E. F. Helin,et al.  The Palomar planet-crossing asteroid survey, 1973-1978 , 1979 .

[88]  T. Gehrels,et al.  The Palomar-Leiden survey of faint minor planets , 1970 .