LSM: A layer subdivision method for deformable object matching

A deformation technique is a method to deform any part of, or an entire object, into a desired shape. Existing deformation methods take a lot of computational cost to represent smoothness correctly due to the constraints caused by differential coefficients of high degree. Thus, it is very difficult to find a general solution. In this paper we propose a LSM (layered subdivision method) that integrates a controlling mechanism, surface deformation, and mesh refinement processing 3D modeling and free-form deformable object matching. The proposed method is considerably more efficient and robust when compared to the existing method of free-form surface, because of the computation of the reference points of deformation edge using geometry of free-form surface. This approach can be applied to automatic inspection of NURBS models and object recognition.

[1]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[2]  Hiromasa Suzuki,et al.  Subdivision surface fitting to a range of points , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[3]  Petros Faloutsos,et al.  Dynamic Free-Form Deformations for Animation Synthesis , 1997, IEEE Trans. Vis. Comput. Graph..

[4]  J. Clark,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[5]  Matthias Teschner,et al.  Efficient updates of bounding sphere hierarchies for geometrically deformable models , 2007, J. Vis. Commun. Image Represent..

[6]  Slawomir Nikiel,et al.  A recursive subdivision scheme for isosurface construction , 2005, Comput. Graph..

[7]  Ahmad H. Nasri,et al.  Designing Catmull-Clark subdivision surfaces with curve interpolation constraints , 2002, Comput. Graph..

[8]  Slawomir Nikiel,et al.  Generation of volumetric escape time fractals , 2003, Comput. Graph..

[9]  Eddie Cheng,et al.  Conditional matching preclusion sets , 2009, Inf. Sci..

[10]  Nicholas M. Patrikalakis,et al.  Shape Interrogation for Computer Aided Design and Manufacturing , 2002, Springer Berlin Heidelberg.

[11]  Nicolas Thome,et al.  Learning articulated appearance models for tracking humans: A spectral graph matching approach , 2008, Signal Process. Image Commun..

[12]  Daniel Thalmann,et al.  Simulation of Facial Muscle Actions Based on Rational Free Form Deformations , 1992, Comput. Graph. Forum.

[13]  Horace Ho-Shing Ip,et al.  Robust point correspondence matching and similarity measuring for 3D models by relative angle-context distributions , 2008, Image Vis. Comput..

[14]  R. M. Natal Jorge,et al.  Segmentation and simulation of objects represented in images using physical principles , 2008 .

[15]  B. J. Gerovac IMPLICATIONS OF MERGING DIGITAL TELEVISION, COMMUNICATIONS, AND COMPUTING , 1992 .

[16]  Xiaoou Tang,et al.  2D Shape Matching by Contour Flexibility , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[18]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[19]  Jaideep Srivastava,et al.  Distortion-free predictive streaming time-series matching , 2010, Inf. Sci..

[20]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[21]  Hiroaki Chiyokura,et al.  Design of solids with free-form surfaces , 1983, SIGGRAPH.

[22]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[23]  Matthias Teschner,et al.  Non-iterative Computation of Contact Forces for Deformable Objects , 2007, J. WSCG.

[24]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[25]  Ahmad H. Nasri Constructing polygonal complexes with shape handles for curve interpolation by subdivision surfaces , 2001, Comput. Aided Des..

[26]  Won-Ki Jeong,et al.  Direct Reconstruction of a Displaced Subdivision Surface from Unorganized Points , 2002, Graph. Model..

[27]  Wen Fang,et al.  Extraction of Metastatic Lymph Nodes from MR Images Using Two Deformable Model-based Approaches , 2007, Journal of Digital Imaging.

[28]  Nicholas M. Patrikalakis,et al.  An algorithm for optimal free-form object matching , 2003, Comput. Aided Des..

[29]  Mathieu Desbrun,et al.  Dynamic real-time deformations using space & time adaptive sampling , 2001, SIGGRAPH.

[30]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[31]  Leif Kobbelt,et al.  A variational approach to subdivision , 1996, Comput. Aided Geom. Des..

[32]  Ulrich Neumann,et al.  A layered approach to deformable modeling and animation , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).