Reductive dechlorination of gamma-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles.

[1]  P. Peng,et al.  Dechlorination of gamma-hexachlorocyclohexane by zero-valent metallic iron. , 2009, Journal of hazardous materials.

[2]  L. Bachas,et al.  Degradation of Trichloroethylene and Dichlorobiphenyls by Iron-Based Bimetallic Nanoparticles. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[3]  W. Verstraete,et al.  Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. , 2007, Chemosphere.

[4]  R. Schlögl,et al.  Alkyne hydrogenation over Pd catalysts: A new paradigm , 2006 .

[5]  J. Vijgen A Global Overview of Residue Management, Formulation and Disposal , 2006 .

[6]  V. de Lorenzo,et al.  Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. , 2006, Environmental microbiology.

[7]  David M. Cwiertny,et al.  On the nonlinear relationship between k(obs) and reductant mass loading in iron batch systems. , 2005, Environmental science & technology.

[8]  W. Verstraete,et al.  Stereospecific effect of hexachlorocyclohexane on activity and structure of soil methanotrophic communities. , 2005, Environmental microbiology.

[9]  P. He,et al.  Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts. , 2005, Chemosphere.

[10]  D. Sholl,et al.  TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. , 2005, Environmental science & technology.

[11]  D. Wunderlin,et al.  Biodegradation of lindane by a native bacterial consortium isolated from contaminated river sediment , 2004 .

[12]  Thomas E. Mallouk,et al.  Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater , 2004 .

[13]  H. Freund,et al.  Hydrogenation on metal surfaces: why are nanoparticles more active than single crystals? , 2003, Angewandte Chemie.

[14]  Colin W. Park,et al.  Catalyst support effects: gas-phase hydrogenation of phenol over palladium. , 2003, Journal of colloid and interface science.

[15]  P. Peng,et al.  Effects of FeS on the Transformation Kinetics of γ-Hexachlorocyclohexane , 2003 .

[16]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[17]  E. Ruiz-Hitzky,et al.  Microwave decomposition of a chlorinated pesticide (Lindane) supported on modified sepiolites , 2002 .

[18]  Salvatore Scirè,et al.  Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: an investigation on the influence of different supports and Pd precursors , 2002 .

[19]  M. Loizidou,et al.  Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. , 2002, Water research.

[20]  M. Sheintuch,et al.  Catalytic fibers and cloths , 2002 .

[21]  J. Trevors,et al.  Colorimetric assay for Lindane dechlorination by bacteria. , 2001, Journal of microbiological methods.

[22]  I. Efremenko,et al.  Implication of palladium geometric and electronic structures to hydrogen activation on bulk surfaces and clusters , 2001 .

[23]  D. Blowes,et al.  Treatment of inorganic contaminants using permeable reactive barriers 1 1 Disclaimer: The U. S. Envi , 2000 .

[24]  Elizabeth R. Carraway,et al.  Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons , 2000 .

[25]  James Farrell,et al.  Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene , 2000 .

[26]  R. C. Hall,et al.  Long-term psychological and neurological complications of lindane poisoning. , 1999, Psychosomatics.

[27]  S. Palleschi,et al.  Effects of organochlorine xenobiotics on human spermatozoa. , 1999, Chemosphere.

[28]  L. Young,et al.  Dehalogenation of lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulfate-reducing bacteria , 1999 .

[29]  W. D. Bostick,et al.  Uranium Removal from Ground Water Using Zero Valent Iron Media , 1999 .

[30]  Paul G Tratnyek,et al.  The Role of Oxides in Reduction Reactions at the Metal-Water Interface , 1998 .

[31]  Martin Reinhard,et al.  Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water , 1998 .

[32]  Hsing-Lung Lien,et al.  Treatment of chlorinated organic contaminants with nanoscale bimetallic particles , 1998 .

[33]  Paul G Tratnyek,et al.  Photoeffects on the Reduction of Carbon Tetrachloride by Zero-Valent Iron , 1998 .

[34]  Wei-xian Zhang,et al.  Synthesizing Nanoscale Iron Particles for Rapid and Complete Dechlorination of TCE and PCBs , 1997 .

[35]  A. Manthiram,et al.  Chains composed of nanosize metal particles and identifying the factors driving their formation , 1997 .

[36]  Liyuan Liang,et al.  Byproduct Formation During the Reduction of TCE by Zero‐Valence Iron and Palladized Iron , 1997 .

[37]  T. Adhya,et al.  Novel polypeptides induced by the insecticide lindane (gamma-hexachlorocyclohexane) are required for its biodegradation by a Sphingomonas paucimobilis strain. , 1996, Biochemical and biophysical research communications.

[38]  E. Heitz,et al.  Development of a wastewater treatment process: Reductive dehalogenation of chlorinated hydrocarbons by metals , 1996 .

[39]  D. Burris,et al.  Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. , 1995, Environmental science & technology.

[40]  T. Junk,et al.  Sonochemical dechlorination of hazardous wastes in aqueous systems , 1995 .

[41]  N. Sethunathan,et al.  Degradation of Alpha-, Beta-, and Gamma-Hexachlorocyclohexane by a Soil Bacterium under Aerobic Conditions , 1990, Applied and environmental microbiology.

[42]  U. Ahlborg,et al.  Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact. , 1980, Critical reviews in toxicology.

[43]  R. Staehle,et al.  Advances in Corrosion Science and Technology , 1972 .