SNe 2013K and 2013am: observed and physical properties of two slow, normal Type IIP events

We present 1 yr of optical and near-infrared photometry and spectroscopy of the Type IIP SNe 2013K and 2013am. Both objects are affected by significant extinction, due to their location in dusty regions of their respective host galaxies, ESO 009-10 and NGC 3623 (M65). From the photospheric to nebular phases, these objects display spectra congruent with those of underluminous Type IIP SNe (i.e. the archetypal SNe 1997D or 2005cs), showing low photospheric velocities (~2 × 10 3 km s -1 at 50 d) together with features arising from Ba II that are particularly prominent in faint SNe IIP. The peak V-band magnitudes of SN 2013K (-15.6mag) and SN 2013am (-16.2mag) are fainter than standard-luminosity Type IIP SNe. The ejected nickel masses are 0.012 ± 0.010 and 0.015 ± 0.006 M ⊙ for SN 2013K and SN 2013am, respectively. The physical properties of the progenitors at the time of explosion are derived through hydrodynamical modelling. Fitting the bolometric curves, the expansion velocity and the temperature evolution, we infer total ejected masses of 12 and 11.5 M ⊙ , pre- SN radii of~460 and~360 R ⊙ , and explosion energies of 0.34 foe and 0.40 foe for SN 2013K and SN 2013am. Late time spectra are used to estimate the progenitormasses from the strength of nebular emission lines, which turn out to be consistent with red supergiant progenitors of ~15 M ⊙ . For both SNe, a low-energy explosion of a moderate-mass red supergiant star is therefore the favoured scenario.

[1]  D. Poznanski,et al.  The evolution of temperature and bolometric luminosity in Type II supernovae , 2017, 1707.07695.

[2]  J. Prieto,et al.  The Nickel Mass Distribution of Normal Type II Supernovae , 2017, 1702.00416.

[3]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[4]  E. Livne,et al.  A study of the low-luminosity Type II-Plateau supernova 2008bk , 2016, 1611.06809.

[5]  V. Morozova,et al.  Unifying Type II Supernova Light Curves with Dense Circumstellar Material , 2016, 1610.08054.

[6]  M. L. Pumo,et al.  Radiation-hydrodynamical modelling of underluminous Type II plateau supernovae , 2016, 1610.02981.

[7]  M. Dopita,et al.  The ANU WiFeS SuperNovA Programme (AWSNAP) , 2016, Publications of the Astronomical Society of Australia.

[8]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[9]  M. Sullivan,et al.  TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.

[10]  G. Williger,et al.  UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.

[11]  F. Timmes,et al.  CONSTRAINTS ON EXPLOSIVE SILICON BURNING IN CORE-COLLAPSE SUPERNOVAE FROM MEASURED Ni/Fe RATIOS , 2015, 1505.05323.

[12]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[13]  M. L. Pumo,et al.  SN 2009ib: A Type II-P supernova with an unusually long plateau , 2015, 1504.02404.

[14]  M. L. Pumo,et al.  SN 2013ab : A normal type IIP supernova in NGC 5669 , 2015, 1504.00838.

[15]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[16]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[17]  K. Maguire,et al.  Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.

[18]  M. Sullivan,et al.  SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase , 2014, 1410.8393.

[19]  Xiaofeng Wang,et al.  OPTICAL AND ULTRAVIOLET OBSERVATIONS OF A LOW-VELOCITY TYPE II PLATEAU SUPERNOVA 2013am IN M65 , 2014, 1409.3400.

[20]  P. Brown,et al.  SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.

[21]  S. Gezari,et al.  TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.

[22]  U. Munari,et al.  THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.

[23]  R. Foley,et al.  Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.

[24]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[25]  V. Dwarkadas On the lack of X-ray bright Type IIP supernovae , 2014, 1402.5150.

[26]  Australian National University,et al.  Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.

[27]  M. L. Pumo,et al.  SN 2009N: linking normal and subluminous Type II-P Sne , 2013, 1311.2525.

[28]  M. L. Pumo,et al.  Calibration relations for core-collapse supernovae , 2013 .

[29]  M. L. Pumo,et al.  Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.

[30]  E. Livne,et al.  Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.

[31]  B. Kumar,et al.  Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.

[32]  R. Itoh,et al.  SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION , 2013, 1303.1565.

[33]  A. Pastorello,et al.  Supernova 2013am in M65 = Psn J11185695+1303494 , 2013 .

[34]  J. Maund,et al.  A late-time view of the progenitors of five Type IIP supernovae , 2013, 1302.7152.

[35]  I. Arcavi,et al.  SUPERNOVA 2003ie WAS LIKELY A FAINT TYPE IIP EVENT , 2012, 1210.7281.

[36]  K. Maguire,et al.  The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.

[37]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[38]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[39]  T. N. Sokolova,et al.  The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.

[40]  K. Maguire,et al.  Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra , 2011, 1112.0035.

[41]  M. L. Pumo,et al.  SN 2009E: a faint clone of SN 1987A , 2011, 1111.2497.

[42]  L. Zampieri,et al.  RADIATION-HYDRODYNAMICAL MODELING OF CORE-COLLAPSE SUPERNOVAE: LIGHT CURVES AND THE EVOLUTION OF PHOTOSPHERIC VELOCITY AND TEMPERATURE , 2011, 1108.0688.

[43]  B. Kumar,et al.  SN 2008in—BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP , 2011, 1106.2390.

[44]  J. Pacheco,et al.  Hubble flow around Fornax cluster of galaxies , 2011, 1106.1291.

[45]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[46]  M. L. Pumo,et al.  The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase , 2011, 1102.5468.

[47]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[48]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[49]  N. Morrell,et al.  SUPERNOVA 2008bk AND ITS RED SUPERGIANT PROGENITOR , 2010, 1011.5873.

[50]  L. Dessart,et al.  Non-LTE time-dependent spectroscopic modelling of Type II-plateau supernovae from the photospheric to the nebular phase: case study for 15 and 25 M⊙ progenitor stars , 2010, 1008.3238.

[51]  D. Poznanski,et al.  TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED , 2010, 1008.0877.

[52]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[53]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[54]  M. L. Pumo,et al.  EC-SNe FROM SUPER-ASYMPTOTIC GIANT BRANCH PROGENITORS: THEORETICAL MODELS VERSUS OBSERVATIONS , 2009, 0910.0640.

[55]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[56]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[57]  M. Hamuy,et al.  BOLOMETRIC LIGHT CURVES FOR 33 TYPE II PLATEAU SUPERNOVAE , 2009, 0906.1999.

[58]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[59]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[60]  Moscow,et al.  Progenitor mass of the type IIp supernova 2005cs , 2008, 0809.3766.

[61]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[62]  A. Pastorello,et al.  ESC* supernova spectroscopy of non-ESC targets , 2008, 0804.1939.

[63]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[64]  T. Chonis,et al.  SETTING UBVRI PHOTOMETRIC ZERO-POINTS USING SLOAN DIGITAL SKY SURVEY ugriz MAGNITUDES , 2007, 0710.5801.

[65]  J. Bloom,et al.  Keck and European Southern Observatory Very Large Telescope View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007 .

[66]  E. Pian,et al.  SN 2006aj Associated with XRF 060218 at Late Phases: Nucleosynthesis Signature of a Neutron Star-driven Explosion , 2007, astro-ph/0703107.

[67]  J. Bloom,et al.  Keck and ESO-VLT View of the Symmetry of the Ejecta of the XRF/SN 2006aj , 2007, astro-ph/0703109.

[68]  S. Smartt,et al.  Ruling out a massive asymptotic giant-branch star as the progenitor of supernova 2005cs , 2007, astro-ph/0701152.

[69]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[70]  V. Utrobin An optimal hydrodynamic model for the normal type IIP supernova 1999em , 2006, astro-ph/0609642.

[71]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[72]  John T. Rayner,et al.  Optical and infrared observations of the Type IIP SN 2002hh from days 3 to 397 , 2006 .

[73]  F. Kitaura,et al.  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[74]  L. D. J. Hillier Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.

[75]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[76]  M. Turatto,et al.  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[77]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[78]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[79]  M. Turatto,et al.  Variety in Supernovae , 2002 .

[80]  M. Turatto,et al.  Peculiar, low-luminosity Type II supernovae: low-energy explosions in massive progenitors? , 2002, astro-ph/0210171.

[81]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[82]  J. Sollerman Optical and infrared observations of radioactive elements in supernovae , 2002, astro-ph/0204469.

[83]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[84]  S. Smartt,et al.  The Nature of the Progenitor of the Type II-P Supernova 1999em , 2001, astro-ph/0107499.

[85]  S. Shapiro,et al.  The fading of supernova 1997D , 2000, astro-ph/0010332.

[86]  D. Osterbrock,et al.  Faint Emission Lines in the Blue and Red Spectral Regions of the Night Airglow , 2000 .

[87]  D. Branch,et al.  Ion Signatures in Supernova Spectra , 1998, astro-ph/9809236.

[88]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[89]  J. Sollerman,et al.  The Peculiar Type II Supernova 1997D: A Case for a Very Low 56Ni Mass , 1998, astro-ph/9803216.

[90]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[91]  N. Chugai The oxygen mass in SN 1987A: Making use of fluctuations in the (O I) lambda lambda 6300, 6364 profile , 1994 .

[92]  R. McCray,et al.  The He I emission lines of SN 1987A , 1993 .

[93]  R. McCray,et al.  The forbidden O I 6300, 6364 A doublet of SN 1987A , 1992 .

[94]  J. Spyromilio Supernova 1988A : another clumped supernova. , 1991 .

[95]  M. Dopita,et al.  Optical spectroscopy of supernova 1987 A at the AAT – I. The FORS data , 1991 .

[96]  S. Woosley,et al.  Hard emission at late times from SN 1987A , 1989 .

[97]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[98]  R. Chevalier,et al.  Late emission from supernovae - A window on stellar nucleosynthesis , 1989 .

[99]  R. Chevalier,et al.  Late emission from SN 1987A , 1987 .

[100]  M. L. Pumo,et al.  Numerical calculation of sub-luminous Type II-plateau supernova events , 2010 .

[101]  D. Andrew Peer Reviewed Title: Towards a Cosmological Hubble Diagram for Type II-P Supernovae , 2006 .

[102]  Thomas A. Weaver,et al.  The Physics of Supernova Explosions , 1986 .

[103]  V. S. Imshennik,et al.  On the theory of the light curves of supernovae , 1971 .